Previous |  Up |  Next

Article

Title: Cohomology of $BO(n_1)\times \dots \times BO(n_m)$ with local integer coefficients (English)
Author: Lastovecki, Richard
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 46
Issue: 1
Year: 2005
Pages: 21-32
.
Category: math
.
Summary: Let $\Cal Z$ be a set of all possible nonequivalent systems of local integer coefficients over the classifying space $BO(n_1)\times \dots \times BO(n_m)$. We introduce a cohomology ring $\bigoplus_{\Cal G\in \Cal Z} H^*(BO(n_1)\times \dots \times BO(n_m);\Cal G)$, which has a structure of a $\Bbb Z\oplus (\Bbb Z_2)^m$-graded ring, and describe it in terms of generators and relations. The cohomology ring with integer coefficients is contained as its subring. This result generalizes both the description of the cohomology with the nontrivial system of local integer coefficients of $BO(n)$ in [Č] and the description of the cohomology with integer coefficients of $BO(n_1)\times \dots \times BO(n_m)$ in [M]. (English)
Keyword: singular cohomology with local coefficients
MSC: 55N25
MSC: 55R40
MSC: 55R45
idZBL: Zbl 1121.55012
idMR: MR2175856
.
Date available: 2009-05-05T16:49:18Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119505
.
Reference: [B] Brown E.H. Jr.: The cohomology of $BSO(n)$ and $BO(n)$ with integer coefficients.Proc. Amer. Mat. Soc. 85 (1982), 283-288. MR 0652459
Reference: [Č] Čadek M.: The cohomology of $BO(n)$ with twisted integer coefficients.J. Math. Kyoto Univ. 39 2 (1999), 277-286. Zbl 0946.55009, MR 1709293
Reference: [F] Feshbach M.: The integral cohomology rings of the classifying spaces of $O(n)$ and $SO(n)$.Indiana Univ. Math. J. 32 (1983), 511-516. Zbl 0507.55014, MR 0703281
Reference: [M] Markl M.: The integral cohomology rings of real infinite dimensional flag manifolds.Rend. Circ. Mat. Palermo, Suppl. 9 (1985), 157-164. Zbl 0591.55007, MR 0853138
Reference: [MS] Milnor J.W., Stasheff J.D.: Characteristic Classes.Princeton University Press and University of Tokyo Press, Princeton, New Jersey, 1974. Zbl 1079.57504, MR 0440554
Reference: [S] Spanier E.: Algebraic Topology.McGraw-Hill, New York-Toronto, Ont.-London, 1966. Zbl 0810.55001, MR 0210112
Reference: [T] Thomas E.: On the cohomology of the real Grassman complexes and the characteristic classes of the $n$-plane bundle.Trans. Amer. Math. Soc. 96 (1960), 67-89. MR 0121800
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_46-2005-1_3.pdf 255.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo