Previous |  Up |  Next

Article

Keywords:
countably-bi-quasi-$k$-space; point-countable $k$-system; local compactness; \newline metrizability
Summary:
This paper deals with the behavior of $M$-spaces, countably bi-quasi-$k$-spaces and singly bi-quasi-$k$-spaces with point-countable $k$-systems. For example, we show that every $M$-space with a point-countable $k$-system is locally compact paracompact, and every separable singly bi-quasi-$k$-space with a point-countable $k$-system has a countable $k$-system. Also, we consider equivalent relations among spaces entried in Table 1 in Michael's paper [15] when the spaces have point-countable $k$-systems.
References:
[1] Arhangel'skii A.V.: Factor mappings of metric spaces. Soviet Math. Dokl. 5 (1965), 368-371.
[2] Arhangel'skii A.V.: On a class of spaces containing all metric spaces and all locally bicompact spaces. Amer. Math. Soc. Transl. 92 (1970), 1-39.
[3] Burke D.K.: On p-spaces and $w\Delta$-spaces. Pacific J. Math. 35 (1972), 285-296. MR 0278255
[4] Burke D.K.: Covering properties. Chapter 9, in Handbook of Set Theoretic Topology; K. Kunen and J.E. Vaughan, Eds., North Holland, Amsterdam, 1984. MR 0776628 | Zbl 0569.54022
[5] Burke D.K., Michael E.: On certain point-countable covers. Pacific J. Math. 64 (1976), 79-92. MR 0467687 | Zbl 0341.54022
[6] Ceder J.G.: Some generalizations of metric spaces. Pacific J. Math. 11 (1961), 105-125. MR 0131860 | Zbl 0103.39101
[7] Engelking R.: General Topology. Polish Sci. Publ., Warszawa, 1977. MR 0500780 | Zbl 0684.54001
[8] Franklin S.P.: Spaces in which sequences suffice II. Fund. Math. 61 (1967), 51-56. MR 0222832 | Zbl 0168.43502
[9] Gillman L., Jerison M.: Rings of Continuous Functions. D. Van Nostrand, Princeton, N.J., 1960. MR 0116199 | Zbl 0327.46040
[10] Gruenhage G., Michael E., Tanaka Y.: Spaces determined by point-countable covers. Pacific J. Math. 113 (1984), 303-332. MR 0749538 | Zbl 0561.54016
[11] Heath R.W.: On open mappings and certain spaces satisfying the first countability axiom. Fund. Math. 57 (1965), 91-96. MR 0179763 | Zbl 0134.41802
[12] Li J., Lin S.: $k_{ømega}$-spaces and Y. Tanaka's question. Acta Math. Hungar. 100 (2003), 321-323.
[13] Martin H.W.: Remarks on the Nagata-Smirnov metrization theorem. Topology Proceedings of the Memphis State Univ. Conference, edited by S.P. Franklin and B.V. Smith Thomas, Lecture Note in Pure and Applied Math. 24, pp.217-224, Dekker, 1976. MR 0433401 | Zbl 0353.54018
[14] Michael E.: $\aleph_{0}$-spaces. J. Math. Mech. 15 (1966), 983-1002. MR 0206907
[15] Michael E.: A quintuple quotient quest. General Topology Appl. 2 (1972), 91-138. MR 0309045 | Zbl 0238.54009
[16] O'Mera P.: On paracompactness in function spaces with the compact-open topology. Proc. Amer. Math. Soc. 29 (1971), 183-189. MR 0276919
[17] Stone A.H.: Metrizability of unions of spaces. Proc. Amer. Math. Soc. 10 (1959), 361-366. MR 0105672
[18] Tanaka Y.: On open finite-to-one maps. Bull. Tokyo Gakugei Univ. Ser. IV 25 (1973), 1-13. MR 0346730 | Zbl 0355.54008
[19] Tanaka Y.: Some necessary conditions for products of $k$-spaces. Bull. Tokyo Gakugei Univ. Ser. IV 30 (1978), 1-16. MR 0512222 | Zbl 0427.54016
[20] Tanaka Y.: Point-countable $k$-systems and products of $k$-spaces. Pacific J. Math. 101 (1982), 199-208. MR 0671852 | Zbl 0498.54023
[21] Tanaka Y.: Metrizability of certain point-countable unions. Sci. Math. Jpn. 57 (2003), 201-206. MR 1959977 | Zbl 1032.54017
[22] Tanaka Y.: Products of $k$-spaces, and questions. Comment. Math. Univ. Carolinae 44 (2003), 335-345. MR 2026168 | Zbl 1100.54006
[23] Tanaka Y., Zhoh Hao-xuan: Spaces determined by metric subsets, and their character. Questions Answers Gen. Topology 3 (1985/86), 145-160. MR 0826985
[24] Yoshioka I.: On the metrizability of $\gamma$-spaces and $ks$-spaces. Questions Answers Gen. Topology 19 (2001), 55-72. MR 1815346
Partner of
EuDML logo