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On spaces with point-countable k-systems

Iwao Yoshioka

Abstract. This paper deals with the behavior of M -spaces, countably bi-quasi-k-spaces
and singly bi-quasi-k-spaces with point-countable k-systems. For example, we show that
every M -space with a point-countable k-system is locally compact paracompact, and
every separable singly bi-quasi-k-space with a point-countable k-system has a countable
k-system. Also, we consider equivalent relations among spaces entried in Table 1 in
Michael’s paper [15] when the spaces have point-countable k-systems.

Keywords: countably-bi-quasi-k-space, point-countable k-system, local compactness,
metrizability

Classification: 54D55, 54E18, 54E35

1. Introduction and primary results

In this paper, we assume that all spaces are Hausdorff and all maps are con-
tinuous onto. By R and N, we denote the real line and the set of all natural
numbers, respectively.
LetA be a collection of subsets of a spaceX . By A,

⋃
A and

⋂
A we denote the

collection {A |A ∈ A}, the union
⋃
{A |A ∈ A} and the intersection

⋂
{A |A ∈

A}, respectively. It is necessary to recall the following definitions.

Definition 1.1. Let P be a cover of a space X .
(a) X is determined ([10]) by P if H ⊂ X is closed if and only if H ∩P is closed
in P for every P ∈ P .

(b) P is called a k-network ([16]) for X if, whenever K ⊂ U with K compact
and U open in X , then K ⊂

⋃
F ⊂ U for some finite F ⊂ P .

(c) X is called an ℵ0-space ([14]) if X is regular and has a countable k-network.
(d) P is called point-countable (point-finite) if every x ∈ X is in at most count-
ably many (finitely many) P ∈ P .

(e) P is called a k-system ([1]) if every element of P is compact and X is
determined by P .

Definition 1.2 ([15]). Let X be a space.
(a) A decreasing sequence {An} of non-empty subsets of X is a k-sequence (q-
sequence) if C =

⋂
n≥1An is compact (countably compact) and every open

subset U with C ⊂ U contains Am for some m.
(b) X is a strict q-space if every x ∈ X has a q-sequence of open neighbourhoods.
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(c) X is a q-space if every x ∈ X has a sequence {Un} of open neighbourhoods
such that xn ∈ Un (n ≥ 1) implies that {xn}n has a cluster point in X .

(d) X is a bi-k-space (bi-quasi-k-space) if, whenever a filter base F clusters
at x, then F meshes with some k-sequence (q-sequence) {An} in X (i.e.,
F ∩ An 6= ∅ for each F ∈ F and each n ∈ N).

(e) X is a countably bi-sequential (= strongly Fréchet) space if, whenever {Fn}
is a decreasing sequence with x ∈

⋂
n≥1 Fn, then there exist xn ∈ Fn such

that {xn}n −→ x.
(f) X is a countably bi-quasi-k (singly bi-quasi-k)-space if, whenever {Fn} is
a decreasing sequence with x ∈

⋂
n≥1 Fn (x ∈ F ), then there exists a q-

sequence {An} such that x ∈
⋂

n≥1Fn ∩ An (x ∈
⋂

n≥1F ∩ An).

(g) X is a Fréchet space (k′-space) if, whenever x ∈ F , then there exists a
sequence {xn} ⊂ F (a compact subset K ⊂ X) such that {xn}n −→ x
(x ∈ F ∩ K).

Every first countable space satisfies conditions (b)–(g) of Definition 1.2. Every
Fréchet space is a k′-space and every k′-space is a singly bi-quasi-k-space.
For undefined terms, the readers are referred to [7], [15].

Under the assumption that spaces have point-countable k-systems, we study
the behavior of spaces in Table 1 in Michael’s paper [15, p. 93] (below, we write
simply Table 1 in this paper).
In Table 1, Michael [15, p. 94] showed that for paracompact spaces, correspond-

ing entries in columns E and F are equivalent.

In §2, we prove that every countably bi-quasi-k, regular space X determined
by a point-countable cover consisting of subspaces with point-countable bases has
a point-countable base. Also, we show that for spaces determined by a point-
countable cover consisting of locally compact, metrizable subsets, all entries in
rows 1, 2, 3 and 4 in all columns except for columnC in Table 1 are equivalent. On
the other hand, there exists a space Y with a point-countable k-system consisting
of metrizable subsets such that Y belongs to all entries in row 5, but does not
belong to any entry in a row 4. We show also that every singly bi-quasi-k-space
which has a point-finite k-system consisting of locally separable, metrizable closed
subsets is metrizable.
In §3, we define the concept of point-countable weak k-systems and prove

that for spaces with point-countable weak k-systems, corresponding entries in
columns B and F in Table 1 are equivalent, and therefore columns B, E and
F become identical. We show further that for spaces with point-countable k-
systems, all entries in rows 2, 3 and 4 in columns B, E and F are equivalent.
Moreover, in a class of M -spaces, we prove that the class of spaces with point-
countable k-systems and the class of spaces with point-countable weak k-systems
are equivalent, and that the finite product of M -spaces with point-countable k-
systems has also a point-countable k-system. For metrizabilities of spaces, we
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show that every Moore (or Nagata) space with a point-countable weak k-system
is metrizable.
For Tanaka’s question [19, p. 203] whether a separable k′, regular space with a

point-countable k-system has a countable k-system, Li and Lin got the following
affirmative answer for Hausdorff spaces.

Theorem 1.3 ([12]). Every separable k′-space with a point-countable k-system
has a countable k-system.

In §4, referring to the proof of the above theorem, we generalize this theorem
as follows:
Every separable singly-bi-quasi-k-space with a point-countable weak k-system

has a countable k-system.

Finally, we recall some elementary facts which are used later on.
The following propositions can be proved in the same manner as Lemma 6

in [20].

Proposition 1.4. Let a space X be determined by a point-countable cover P .
Then for each q-sequence {An} in X , some Am is contained in a finite union of

elements of P . Therefore, if C ⊂ X is countably compact, then C is contained
in a finite union of elements of P .

Proposition 1.5 ([20, Proposition 7]). Let X be a countably bi-quasi-k-space.
If X is determined by a point-countable closed cover P then for each x ∈ X , P
contains a finite subcollection F such that x ∈

⋂
F and x ∈ int(

⋃
F).

Definition 1.6. A space X is hemicompact if there exists a sequence {Kn}
consisting of compact subsets such that every compact subset is contained in
some Km.

Every hemicompact regular space is paracompact.

The following well-known result follows from Proposition 1.4.

Proposition 1.7. For a space X , the following conditions are equivalent:
(1) X has a countable k-system;
(2) X is a hemicompact k-space.

2. Metrizability

In this section, we study the metrizations of spaces which are determined by
point-countable covers consisting of metrizable subsets.
We begin with a well-known example.

Example 2.1 ([15, Example 10.1]). There exists an ℵ0, Fréchet regular, non
metrizable space Y with the following properties.
(1) Y is not countably bi-quasi-k.
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(2) Y is not locally compact (not even q).

(3) Y has a countable k-system P consisting of metrizable subsets.
(4) The above cover P is also a k-network for Y .

(5) Y has no point-countable base.

(6) Y has no point-finite k-system.

(7) Y is not determined by any point-finite cover consisting of metrizable sub-
sets.

Indeed, let X be the topological sum of a sequence {In} of copies of the inter-
val I, let A = {an = 0 ∈ In |n ∈ N}, and let Y = X/A, the space obtained from
X by identifying A to a point. Let f : X −→ Y be the quotient map, and let
a = f(A). Then f is closed, so Y is an ℵ0 ([14]), Fréchet regular space in which
every point is a Gδ set. (1) follows from [15, Theorem 9.9] or Theorem 2.5 later.
Now, let Y be a q-space. Then Y is strict q by [15, p. 103], so Y is countably
bi-quasi-k. This contradiction implies (2). To prove (3) and (4), we show that Y
is determined by a countable k-network consisting of compact metrizable subsets.
For each n ∈ N, let {Bn,k | k ∈ N} be a base for In such that each Bn,k is compact
metrizable. Then B = {Bn,k |n, k ∈ N} is a countable base for X . First, we show

that P = {f(Bn,k) |n, k ∈ N} is a countable k-network consisting of compact
metrizable subsets. Suppose K ⊂ V , where K is compact and V is open in Y .
Then we have two cases.

Case 1. Let a /∈ K. Since f−1(K) ⊂ f−1(V ) and f−1(K) is homeomorphic
to K, f−1(K) ⊂ B1 ∪ · · · ∪ Bm ⊂ f−1(V ) for some {B1, . . . , Bm} ⊂ B. Hence,
K ⊂ f(B1) ∪ · · · ∪ f(Bm) ⊂ V for {f(Bi) | 1 ≤ i ≤ m} ⊂ P .

Case 2. Let a ∈ K. Then, we have that f−1(K \ {a}) ⊂ I1 ∪ · · · ∪ In for some
n. Indeed, if xn(i) ∈ f−1(K \ {a}) ∩ In(i) for {n(1) < n(2) < . . . }, then we put

U =
⋃

n≥1An, where An(i) = [an(i), xn(i)) ⊂ In(i) (i ≥ 1) and An = In(n /∈

{n(i) | i ≥ 1}). Then f−1f(U) = U and W = f(U) is an open neighbourhood of
a such that W ∩{f(xn(i))}i = ∅. Therefore, a is not a cluster point of {f(xn(i))}i

and hence, {f(xn(i))}i has no cluster point in Y . This contradicts to {f(xn(i))}i ⊂

K. Now, L = f−1(K) ∩ (I1 ∪ · · · ∪ In) is compact and L ⊂ f−1(V ). Hence,
L ⊂ B1 ∪ · · · ∪ Bk ⊂ f−1(V ) for some {Bi | 1 ≤ i ≤ k} ⊂ B. Since f(L) =
K ∩ f(I1 ∪ · · · ∪ In), K \ {a} ⊂ f(I1 ∪ · · · ∪ In) and a ∈ f(I1 ∪ · · · ∪ In), we have
that f(L) = K. Therefore K ⊂ f(B1) ∪ · · · ∪ f(Bk) ⊂ V for {f(Bi) | 1 ≤ i ≤
k} ⊂ P , which implies that P is a k-network for Y . Next, X is determined by B
since X is determined by B. Hence, since f is quotient, Y is determined by P .
To see (5), let Y have a point-countable base. Then the separable space Y is
metrizable, which is a contradiction. To prove (6), suppose that Y has a point-
finite k-system P . Let {Fn} be any decreasing sequence with y ∈ Fn (n ≥ 1).
Since Y is Fréchet, for each n ∈ N, some sequence {yn,k}k ⊂ Fn converges to y.
Therefore Kn = {yn,k}k ∪{y} ⊂

⋃
Fn for some finite Fn ⊂ P by Proposition 1.4.
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Hence, some subsequence Sn ⊂ {yn,k}k is contained in Pn for some Pn ∈ Fn

(n ≥ 1), which implies that y ∈ Sn ⊂ Pn. Then there exists P0 ∈ P such
that Pn(i) = P0 for some increasing subsequence {n(i)}. Hence, for the compact

subset P0, y ∈ Sn(i) ⊂ Fn(i) ∩ P0 for each i ∈ N. Therefore Y is strongly k′, which

contradicts to (1). Finally, to show (7), let Y be determined by a point-finite cover
consisting of metrizable subsets. Since Y is Fréchet, Y is countably bi-sequential
(this is proved without closedness of elements of P) from Theorem 2.9 later, which
contradicts to (1).

Example 2.1 asserts that there exists an ℵ0, Fréchet space X with a countable
k-system consisting of metrizable subsets, but X is not metrizable. On the other
hand, Theorem 2.7 later asserts that every countably bi-quasi-k-space with a
point-countable k-system consisting of metrizable subsets is metrizable. Prior to
this result we give conditions for a countably bi-quasi-k-space to have a point-
countable base.

The following lemma is known (see [21, Lemma 1]).

Lemma 2.2. Consider the following conditions for a cover P of a space X .

(1) X is determined by P .
(2) For every infinite sequence {xn} converging to x, some P ∈ P contains x
and xn frequently.

Then (1)=⇒(2) and, (2)=⇒(1) if X is a sequential space.

A space X is of countable tightness if whenever A ⊂ X and x ∈ A, then x ∈ C
for some countable subset C ⊂ A. As is well-known, every sequential space is of
countable tightness.

The following lemma is proved in the same manner as Proposition 3.2 in [10],
using Proposition 1.4.

Lemma 2.3. Let X be a countably bi-quasi-k-space of countable tightness. If
X is determined by a point-countable cover P , then every x ∈ X is in int(

⋃
F)

for some finite F ⊂ P .

Tanaka [21, Lemma 5] gave the following condition for a countably bi-sequential
regular space to have a point-countable base.

Theorem 2.4. Let X be a countably bi-sequential regular space which is deter-
mined by a point-countable cover P . If every element of P is a locally separable,
metrizable subset, then X is a locally separable space with a point-countable base.
Thus X is metrizable.

Franklin [8, Example 7.1] gave a countably bi-quasi-k, sequential regular space
which is not countably bi-sequential. So, for countably bi-quasi-k-spaces, we prove
a similar result to Theorem 2.4.
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Theorem 2.5. Let X be a countably bi-quasi-k, regular space which is deter-
mined by a point-countable cover P . If every element of P has a point-countable
base, then X has a point-countable base.
Additionally, if every element of P is locally separable, then X is a locally

separable, metrizable space.

Proof: First, notice that X is a sequential space by [10, Lemma 1.8]. Let
P = {Pα |α ∈ A} and let Bα be a point-countable base for Pα(α ∈ A). Then
B = {B |B ∈ Bα for some α ∈ A} is a point countable cover of X . We show
that for every open subset W ⊂ X , W is determined by the point-countable
cover B(W ) = {B ∈ B |B ⊂ W}. Indeed, suppose not. Let H ⊂ W be a
subset such that H ∩ B is closed in B for each B ∈ B(W ) but H is not closed
in W . Since W is sequential, H is not sequentially closed in W . Hence for some
z ∈ W , H contains the sequence {zn} such that {zn}n −→ z in W , z /∈ H .
By Lemma 2.2, some Pα ∈ P contains {zn(i)}i ∪ {z}, so z ∈ Pα ∩ W . Therefore

z ∈ B0 ⊂ Pα ∩ W for someB0 ∈ Bα, so thatB0 ∈ B(W ). There exists some t such
that {zn(i) | i ≥ t}∪{z} ⊂ B0 and {zn(i) | i ≥ t} ⊂ B0∩H . Since B0∩H is closed

in B0 and {zn(i) | i ≥ t} −→ z in B0, z ∈ B0 ∩ H . This is a contradiction. Next,

let x ∈ U , where U is open in X . By regularity of X , U is a countably bi-quasi-k,
sequential space and U is determined by B(U). By Lemma 2.3, there exists a
finite family F ⊂ B(U) such that x ∈ intU (

⋃
F) = int(

⋃
F) ⊂

⋃
F ⊂ U (where

for C ⊂ U , intU (C) is the interior of C in U). Therefore, X has a point-countable
base by [5, Theorem 6.2]. Moreover, let the element of P be locally separable.
Then any element of P is locally separable, metrizable by [13, Theorem 6]. Hence
X is locally separable, metrizable by Theorem 2.4. �

Recall that a space X is meta-Lindelöf if every open cover of X has a point-
countable open refinement.

Corollary 2.6 ([4, Theorem 4.28]). Let X be a meta-Lindelöf regular space

which is locally separable, locally metrizable. Then X is a metrizable space.

Proof: X has a point-countable cover P consisting of separable metrizable open
subsets and hence, X is determined by P . Since X is first countable, X is metriz-
able by Theorem 2.5. �

Theorem 2.7. Let X be a countably bi-quasi-k-space which is determined by a
point-countable cover P . If each element of P is a locally compact, metrizable
subset or a locally separable, metrizable closed subset, then X is a locally sepa-
rable, metrizable space. In particular, if all elements of P are locally compact,
metrizable, then X is locally compact.

Proof: Let P = {Pα |α ∈ A}, where each Pα is a locally compact, metrizable
subset or a locally separable, metrizable closed subset. Let α ∈ A. In the former
case, there exists a point-countable base Bα for Pα such that Bα is point-countable,
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Pα is determined by Bα and B = B
Pα (closure of B in Pα) is compact metrizable

for every B ∈ Bα. In the latter case, there exists a point-countable base Bα for Pα

such that Bα is point-countable, Pα is determined by Bα and B(⊂ Pα) is separable
metrizable for every B ∈ Bα. Therefore by [10, Lemma 1.9], X is determined by
a point-countable cover C = {B |B ∈ Bα for some α ∈ A} consisting of separable
metrizable closed subsets. To see that X is a locally separable, regular space, let
x ∈ X . Then, by Proposition 1.5, x ∈ int(

⋃
F) for some finite F ⊂ C and,

⋃
F

is a separable metrizable closed subset (if all elements of P are locally compact,
then

⋃
F is compact). Hence X is locally separable, regular (locally compact,

respectively), which implies that X is metrizable by Theorem 2.5. �

Remark 2.8. Example 2.1 asserts that in Theorem 2.7, the condition that X is
countably bi-quasi-k cannot be changed to be “Fréchet ℵ0”.

For the metrizability of singly bi-quasi-k-spaces, the following theorem is re-
lated to the question [23, Question 1.2] whether a regular space X with a point-
finite (or point-countable) k-system consisting of metrizable subsets is a σ-space.

Theorem 2.9. Let X be a singly bi-quasi-k-space which is determined by a
point-finite cover P . Then the following hold.
(1) If every element of P is a locally compact, metrizable subset, then X is a
locally compact, metrizable space.

(2) If every element of P is a locally separable, metrizable closed subset, then
X is a locally separable, metrizable space.

Proof: Let the condition of (1) or (2) hold. From the proof of Theorem 2.7,
X is determined by a point-countable cover C consisting of separable metrizable
closed subsets. Therefore by Theorem 2.7, it is sufficient to show that X is
countably bi-sequential. We first show that X is Fréchet. Suppose that x ∈ F .
Then x ∈ F ∩ An (n ≥ 1) for some q-sequence {An}. By Proposition 1.4, some
Ak is contained in the union of a finite subcollection {C1, . . . , Cm} ⊂ C. Let
B = C1 ∪ · · · ∪ Cm. Since B is Fréchet and x ∈ F ∩ Ak ⊂ B, there exists a
sequence {xn} ⊂ F ∩ Ak such that {xn}n −→ x. Hence X is Fréchet. To see
that X is countably bi-sequential, let {Fn} be a decreasing sequence with x ∈ Fn

(n ≥ 1). For each n ∈ N, we can choose a sequence {xn,k}k ⊂ Fn such that
{xn,k}k −→ x. For each n ∈ N, {x} ∪ Sn ⊂ Pn for some Pn ∈ P and some
subsequence Sn ⊂ {xn,k}k by Lemma 2.2. Since P is a point-finite cover, there
exists P0 ∈ P such that Pn(i) = P0 for some sequence n(1) < n(2) < . . . .

Then {x} ∪ Sn(i) ⊂ P0 (i ≥ 1). Since P0 is a first countable space, we can

choose zi ∈ Sn(i) ⊂ Fn(i) such that {zi}i −→ x. Consequently, X is countably
bi-sequential. �

Remark 2.10. For the necessity of local separability of each element of a cover
P of the space X in Theorem 2.7 or 2.9, Tanaka [18, Example 3.2] showed that
there exists a first countable Tychonoff space which is determined by a point-finite
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cover consisting of metrizable open and closed subsets, but not normal. On the
other hand, Stone [17, Theorem 5] showed that a regular space X is metrizable
if X has a point-countable cover consisting of locally separable, metrizable open
subsets.

The following example shows that in Theorem 2.9, we cannot change “singly
bi-quasi-k” for “sequential”.

Example 2.11 ([10, Example 9.3]). A two-to-one quotient map f : M −→ Y ,
with M the topological sum of compact metric spaces, and Y separable, Ty-
chonoff, not meta-Lindelöf. Also, Y is a sequential space with a point-finite
k-system consisting of metrizable subsets. But, Y is not singly bi-quasi-k by
Theorem 2.9.

3. Local compactness

Example 2.1 asserts that there exists an ℵ0, Fréchet space with a countable k-
system, which is not locally compact. But, we have the following theorem among
countably bi-quasi-k-spaces.

Theorem 3.1. (1) If X is a countably bi-quasi-k-space with a point-countable
k-system, then X is a locally compact space.

(2) If X is a countably bi-quasi-k, hemicompact regular space, then X is a

locally compact space with a countable k-system.

Proof: Since (1) is evident from Proposition 1.5, we prove (2). By paracom-
pactness of X , the closure of every countably compact subset is compact, so X is
countably bi-k from [15, p. 94] and hence a k-space. Thus, from Proposition 1.7,
X has a countable k-system and consequently is locally compact. �

Remark 3.2. (1) The separable completely metrizable, non locally compact
space X = [0, 1] \ {1/n |n ≥ 2} with the relative topology of R has no point-
countable k-system. This implies that we cannot weaken “hemicompact” to “σ-
compact” in Theorem 3.1(2).
(2) Let X be an uncountable discrete space. Then X is a locally compact

metrizable space with a point-finite k-system, but X is not hemicompact.

Theorem 3.3. If X is a singly bi-quasi-k-space with a point-finite k-system P ,
then X is a locally compact space.

Proof: Suppose that X has no compact neighbourhood at some point x ∈ X .

Let {P ∈ P |x ∈ P} = {P1, . . . , Pk} and E =
⋃k

i=1 Pi. Then x ∈ X \ E and

hence, x ∈ An ∩ (X \ E) for some q-sequence {An}. By Proposition 1.4, some

Am is contained in
⋃l

i=1Qi for some finite Q = {Q1, . . . , Ql} ⊂ P . Then, G = X\⋃
{Q ∈ Q |x /∈ Q} is an open neighbourhood of x such that G∩Am∩(X \E) = ∅,
which is a contradiction. �
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We note that the condition “singly bi-quasi-k” of a space X in Theorem 3.3
cannot be weakened to be “sequential” by Example 2.11.

Let us define the concept of “weak k-systems”.

Definition 3.4. (a) A subset A of a space X is called relatively compact if the
closure of A is compact.

(b) A cover P of a space X is called a weak k-system if X is determined by P
and every element of P is relatively compact.

Clearly, every space with a point-countable weak k-system is a k-space.
A space X is called σ-para-Lindelöf if every open cover of X has a σ-locally

countable open refinement.
Every σ-para-Lindelöf space is meta-Lindelöf.

Proposition 3.5. (1) Every locally compact, meta-Lindelöf space X has a point-
countable weak k-system.

(2) Every locally compact, σ-para-Lindelöf space X has a point-countable k-
system.

(3) Every locally compact locally separable, meta-Lindelöf space X has a point-
countable k-system.

Proof: Since (1) is evident, we prove (2). For any x ∈ X , let V (x) be a compact
neighbourhood of x. Then, X has a σ-locally countable open refinement P =⋃

n≥1 Pn of {V (x) |x ∈ X} with Pn locally countable. Therefore, P =
⋃

n≥1 Pn is
a point-countable cover ofX consisting of compact subsets. Since X is determined
by P , X is also determined by P. For (3), for any x ∈ X , let V (x) be an open

neighbourhood of x, where V (x) is compact and V (x) is separable. Then, X has a
star-countable open refinement P of {V (x) |x ∈ X} by [4, Theorem 4.28]. Hence,
X is determined by a point-countable cover P consisting of compact subsets. �

I do not know whether a space with a point-countable weak k-system has a
point-countable k-system.
The following example shows that the class of paracompact spaces and the

class of spaces with point-countable k-systems are exclusive.

Example 3.6. (1) Let p ∈ βN \N, where βN is the Stone-Čech compactification
of N. Then the subspace X = N ∪ {p} of βN is hemicompact paracompact.
Since X is not a k-space, X has no point-countable weak k-system.

(2) The space Y in Example 2.11 has a point-finite k-system, but Y is not
paracompact.

Definition 3.7. (a) A space X is anM -space if there exists a quasi-perfect map
f : X −→ Y onto a metrizable space Y .

(b) A space X is a p-space ([2]) if X is Tychonoff and there exists a sequence
{Gn} of open collections in βX such that X ⊂

⋃
Gn (n ≥ 1) and for each

x ∈ X ,
⋂

n≥1 St(x,Gn) ⊂ X .
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It is well-known that every locally compact space or Moore Tychonoff space is
a p-space, every p-space is a strict q-space [3, Theorem 1.3]. Also, every locally
compact paracompact space is anM -space, and everyM -space is a strict q-space.
We now consider the relations between entries in Table 1 ([15, p. 93]) for spaces

with point-countable k-systems.
Michael showed that for paracompact spaces, corresponding entries in columns

E and F in Table 1 coincide for each row ([15, p. 94]). On the other hand, he
gave a paracompactM -space (hence, singly bi-quasi-k-space) which is not k′ ([15,
Example 10.5]). Hence, in the realm of paracompact spaces, for n = 1, 2, 3, 4 and
5, an entry in row n in F is not necessarily an entry of the same row in B.

Theorem 3.8. In Michael’s Table 1, the following facts hold.
(1) In the realm of spaces with a point-countable weak k-system, corresponding
entries in columns B and F coincide for each row.

(2) In the realm of spaces with a point-countable k-system, all entries in rows
2, 3 and 4 in columns B and F are equivalent.

(3) If X is a countably bi-quasi-k-space with a point-countable k-system con-
sisting of metrizable subsets, then X is a locally compact, metrizable space.

Proof: (1): In rows 2, 4, 5 and 6, corresponding entries in columns B and
F are coincident by Proposition 1.4. We show the coincidence in row 1. Let
X be an M -space and let P be a point-countable weak k-system of X and let
x ∈ X . Since X is a strict q-space, there exists a q-sequence {Un} of open
neighbourhoods of x. Then, some Um is contained in

⋃
F for some finite F ⊂ P

by Proposition 1.4. Therefore, Um is a compact neighbourhood of x, which implies
that X is locally compact. Next, let f : X −→ Y be a quasi-perfect map onto a
metrizable space Y . Since f−1(y) is a countably compact closed subset for any
y ∈ Y , f−1(y) is contained in

⋃
F for some finite F ⊂ P , so that f−1(y) is

compact. Since f is a perfect map, X is paracompact. Next by [19], we show the
coincidence in row 3. Let X be a bi-quasi-k-space and let P be a point-countable
weak k-system of X . For any filter base F with x ∈

⋂
F , some q-sequence {An}

meshes with F . Therefore, some Am is compact, and the k-sequence {Bn}, where
Bn = Am for each n ∈ N, meshes with F . This implies that X is a bi-k-space.
Also, let K be the set of all compact subsets of X , Z be the topological sum of K
and f : Z −→ X be a natural map. To see that f is a bi-quotient map, let x ∈ X
and let F be a filter base on X with x ∈

⋂
F . Then, there exists a k-sequence

{An} such that x ∈ F ∩ An for each F ∈ F and each n ∈ N. Since some Am is
contained in the union of some finite family of P , Am ∈ K and g = f |Am is a
homeomorphism. Thus, f is bi-quotient by [19, Lemma 2.1(3)]. Then it follows
that X is locally compact. (2) follows from Theorem 3.1(1) and, (3) follows from
Theorem 2.7. �

Remark 3.9. (1): With respect to (2) or (3) of Theorem 3.8, we note that
the space Y in Example 2.1 has a countable k-system consisting of metrizable
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subsets, and has all conditions in row 5 in Table 1, but Y does not satisfy any of
the conditions in row 4.
(2): Theorem 3.3 asserts that for spaces with a point-finite k-system, all entries

in rows 2, 3, 4 and 5 in columns B, E and F in Table 1 are equivalent. On the
other hand, the space Y in Example 2.11 has a point-finite k-system and satisfies
all conditions in row 6 except for column C in Table 1, but Y does not satisfy
any of the conditions in row 5.
(3): The next example shows that there exists a space X which has a point-

finite k-system and satisfies the condition in row 2 of a column B, but X does
not satisfy any of the conditions in row 1 (compare with Theorem 3.3 or Theo-
rem 3.8(2)).

The following example is given by modifying Example 4.3 in [4].

Example 3.10. There exists a locally compact, metacompact subparacompact
space X with a point-finite k-system consisting of the one-point compactifications
of discrete spaces such that X2 is a locally compact space with a point-finite k-
system, but X is not paracompact nor an M -space.
Indeed, let X = ω1 × ω0 \ {(0, 0)} as a set. Let Hn = ω1 × {n} (n ≥ 1) and

Vα = {α} × ω0(0 < α < ω1). Define a topology on X as follows: For n ≥ 1,
neighbourhoods of (0, n) must contain (0, n) and all but finitely many points of
Hn. For 0 < α < ω1, neighbourhoods of (α, 0) must contain (α, 0) and all but
finitely many points of Vα. All other points of X are isolated. Since each Hn

or Vα is compact, X is a locally compact T2-space. Hence, X is determined
by a point-finite cover P = {Hn |n ≥ 1} ∪ {Vα | 0 < α < ω1} consisting of
compact open subsets (X2 is also determined by {P × P ′ |P, P ′ ∈ P}). Next,
metacompactness of X is evident and subparacompactness of X follows from
X = (

⋃
n≥1Hn) ∪ ((0, ω1) × {0}) and [4, Theorem 7.3]. Also, X is not normal

since two disjoint closed subsets A = {(0, n) |n ≥ 1} and {(α, 0) | 0 < α < ω1}
cannot be separated by open subsets in X . Finally, if X is an M -space, then X
is paracompact from Theorem 3.8(1), which is a contradiction.

Question 3.11. Is every normal locally compact space with a point-countable
k-system paracompact ?

A space X is called a Nagata space ([6, Definition 5.1]) if, for any x ∈ X , there
exists a sequence {gn(x)} of open neighbourhoods of x such that (i) gn+1(x) ⊂
gn(x) and (ii) if gn(x) ∩ gn(xn) 6= ∅ (n ≥ 1), then x is a cluster point of {xn}n.
Every Nagata space is paracompact perfectly normal, and the above equivalent

condition was given by [11, Theorem 5].

Theorem 3.12. (1) Every Nagata spaceX with a point-countable weak k-system
is a locally compact, metrizable space.

(2) Every developable spaceX with a point-countable weak k-system is a locally
separable, metrizable space.
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Proof: (1): Since X is a strict q-space, X is locally compact by Proposition 1.4.
Hence X is metrizable from [24, Theorem 18].

(2): Let P be a point-countable weak k-system of X . Then for any P ∈ P , P
is a compact Moore space and hence, P is separable metrizable. Since X is first
countable, some open neighbourhood U of x is contained in

⋃
F for some finite

F ⊂ P by Proposition 1.4. Then
⋃
F is regular, so that X is a regular space.

Therefore, X is locally separable, metrizable by Theorem 2.5. �

Theorem 3.13. Let X be a hemicompact regular space. Then in Table 1, all
entries in rows 1, 2, 3 and 4 in columns B and F are equivalent, and corresponding
entries in columns B and F coincide in rows 5 and 6.

Proof: Let X be a countably bi-quasi-k-space. Since X is Lindelöf regular, X
is paracompact. Also X is locally compact by Theorem 3.1(2). Next, let X be a
quasi-k-space, then X is a k-space by paracompactness and [15, p. 94]. Finally, let
X be a singly bi-quasi-k-space, then X is a singly bi-k-space. Therefore, X has a
countable k-system by Proposition 1.7. Hence X is a k′-space by Theorem 3.8.

�

We note that the space Y in Example 2.1 is a hemicompact Fréchet ℵ0, regular
space with a countable k-system. Also, Y satisfies all the conditions in rows 5
and 6 in Table 1, but none of the conditions in rows 1, 2, 3 and 4.

Theorem 3.14. Consider the following conditions for a space X .

(1) X is an M -space with a point-countable k-system.

(2) X is an M -space with a point-countable weak k-system.

(3) X is a locally compact, paracompact space.

(4) X is a locally compact space with a point-countable k-system.

(5) X is a locally compact space with a point-countable weak k-system.

(6) X is a p-space with a point-countable k-system.

(7) X is a p-space with a point-countable weak k-system.

(8) X is a countably bi-quasi-k-space with a point-countable k-system.

(9) X is a countably bi-quasi-k-space with a point-countable weak k-system.

Then the following implications hold.

(1)⇐⇒(2)⇐⇒(3)=⇒(4)⇐⇒(6)⇐⇒(8) and (4)=⇒(5)⇐⇒(7)=⇒(9).

Proof: The implications (1)=⇒(2), (4)=⇒(6)=⇒(8) and (4)=⇒(5)=⇒(7)=⇒(9)
are evident. (3)=⇒(1) and (3)=⇒(4) follows from Proposition 3.5. (8)=⇒(4)
follows from Theorem 3.1. Next, let X be a p-space with a point-countable
weak k-system. Then X is a strict q-space and hence, X is locally compact
by Theorem 3.8(1). This implies (7)=⇒(5). Finally, (2)=⇒(3) also follows from
Theorem 3.8(1). �
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Remark 3.15. It is well-known that in the realm of paracompact spaces, M -
spaces and p-spaces are equivalent. On the other hand, in Theorem 3.14, (6) does
not always imply (1) and, (4) does not always imply (3) by Example 3.10.
In §4, we will see that for a class of separable spaces, all statements of Theo-

rem 3.14 are equivalent.

Question 3.16. Under what conditions, does a space with a point-countable
weak k-system have a point-countable k-system ?

Tanaka [20, Example 3] showed that there exists a paracompact space X with
a point-finite k-system consisting of metrizable subsets, but X2 has no k-system.
On the other hand, in [22, Theorem 6] he proved that the product space X×Y of
singly bi-quasi-k-spaces determined by point-countable covers consisting of locally
compact closed subsets is also determined by a point-countable cover consisting
of locally compact closed subsets.
For the product of spaces with point-countable weak k-systems, the next corol-

lary follows from Theorem 3.8.

Corollary 3.17. (1) Every countable product of M -spaces with point-countable
weak k-systems is a paracompact Čech-complete M -space.

(2) Every finite product ofM -spaces with point-countable weak k-systems is an
M -space with a point-countable k-system.

Proof: (1) Let Xn be an M -space with a point-countable weak k-system for
each n ∈ N. Then, by Theorem 3.14, each Xn is locally compact, paracompact
M and hence, there exists a perfect map fn : Xn −→ Yn onto a locally compact
metrizable space Yn. Therefore, the product map of {fn}n from X =

∏
n≥1Xn

to a completely metrizable space
∏

n≥1 Yn is perfect. Hence, X is paracompact

Čech-complete M .
(2) Let X and Y be M -spaces with point-countable weak k-systems. Then

X × Y is locally compact, paracompact M by the above. Hence X × Y has a
point-countable k-system by Theorem 3.14. �

We note that the countable infinite power R
∞ of R has no point-countable

weak k-system, because R
∞ is not locally compact.

Question 3.18. 1 Does the square X2 of a locally compact space X with a
point-countable weak k-system P have a point-countable weak k-system ?

Corollary 3.19. For a space X , the following conditions are equivalent.
(1) X is an M -space with a countable k-system.
(2) X is a p-space with a countable k-system.
(3) X is a regular hemicompact M -space.

1Quite recently, Y. Tanaka gave a partial answer as follows: If X is a sequential space, or
every element of P is a k-space, then the answer is affirmative.
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(4) X is a locally compact, hemicompact space.
(5) X is a countably bi-quasi-k-space with a countable k-system.
(6) X is a countably bi-quasi-k, hemicompact regular space.
(7) There exists a perfect map f from X onto a hemicompact metrizable (hence,
separable locally compact, metrizable) space Y .

Proof: (1)=⇒(2) follows from Theorem 3.8. (2)=⇒(3) is evident. (3)=⇒(4):
Since X is countably bi-quasi-k, X is locally compact by Theorem 3.1. (4)=⇒(5)
holds by Proposition 1.7. (5)=⇒(6): Since X is locally compact, X is regu-
lar. (6)=⇒(7): Since X is locally compact, paracompact, X is paracompact M .
Hence, there exists a perfect map f from X onto a metrizable space Y , so Y
is hemicompact. (7)=⇒(1): Since Y is locally compact, X is locally compact,
hemicompact. Hence, X is an M -space with a countable k-system. �

4. Separable spaces

Theorem 1.3 can be weakened as follows.

Theorem 4.1. Let X be a separable singly bi-quasi-k-space. Then the following
conditions are equivalent.

(1) X has a point-countable k-system.
(2) X has a point-countable weak k-system.
(3) X has a countable k-system.

Proof: (1)=⇒(2) and (3)=⇒(1) are evident.
(2)=⇒(3): By Theorem 3.8(1), X is a k′-space. Let K be a point-countable

weak k-system. For a countable dense subset D of X , let P = {P |P ∈ K and
P ∩D 6= ∅}. Then X is determined by P in view of the proof of Theorem in [12].
Hence, X has a countable k-system. �

Remark 4.2. In Theorem 4.1, the condition “singly bi-quasi-k” of a space X is
necessary.
Indeed, the space Y in Example 2.11 is a separable sequential regular space with

a point-finite k-system consisting of metrizable subsets, but Y has no countable
k-system because Y is not Lindelöf.

Theorem 4.3. If X is a separable space, then all conditions in Theorem 3.14
are equivalent.

Proof: It is sufficient to show (9)=⇒(3). Since X has a countable k-system by
Theorem 4.1, X is locally compact by Theorem 3.1. Since X is regular, X is
paracompact. �

Theorem 4.4. Let X be a Lindelöf space. Then all conditions from (1) to (8)
in Theorem 3.14 are equivalent. Moreover, these are equivalent to the following
condition.
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(10) X is a strict q-space with a point-countable weak k-system.

Proof: It is sufficient to show (7)=⇒(2) and (3)⇐⇒(10). (7)=⇒(2): Since X
is a Tychonoff space, X is a paracompact p-space. Hence X is an M -space.
(10)=⇒(3): Since X is locally compact by Theorem 3.8(1), X is paracompact.
(3)=⇒(10) is evident. �

Theorem 4.5. Let X be a separable countably bi-quasi-k-space. Then the fol-
lowing conditions are equivalent.

(1) X has a point-countable weak k-system.
(2) X is a locally compact, hemicompact space.
(3) X is a locally compact, paracompact space.
(4) X is a locally compact, metacompact space.
(5) X is a locally compact, meta-Lindelöf space.
(6) X is a hemicompact regular space.

Proof: (1)=⇒(2) follows from Theorems 4.1 and 3.1. (2)=⇒(3)=⇒(4)=⇒(5)
is evident. We show (5)=⇒(6). By Proposition 3.5(1) and Theorem 4.1, X has
a countable k-system. Since X is locally compact, X is a hemicompact regular
space by Proposition 1.7. Finally, (6)=⇒(1) follows from Theorem 3.1(2). �

Remark 4.6. Theorem 4.5 asserts that in the realm of separable spaces with
point-countable weak k-systems, all entries in rows 1, 2, 3 and 4 in columns B, E
and F in Table 1 are equivalent.
On the other hand, the space Y in Example 2.1 satisfies all the conditions in

row 5 of all columns, but Y is not countably bi-quasi-k.

We note that Burke [4, Corollary 6.12] gave a first countable separable Lindelöf
regular space Z such that Z2 is not paracompact.

Corollary 4.7. Let X and Y be countably bi-quasi-k, separable (Lindelöf )
spaces with point-countable weak k-systems (point-countable k-systems). Then
the product X × Y is a locally compact space with a countable k-system (hence,
paracompact).

Proof: X , Y are locally compact, hemicompact by Theorem 4.5. Hence, so is
X×Y . ThereforeX×Y has a countable k-system. If X , Y are Lindelöf countably
bi-quasi-k-spaces with point-countable k-systems, then X , Y are locally compact
by Theorem 3.1(1). Since X , Y are Lindelöf, they are hemicompact. Hence X×Y
is locally compact, hemicompact and hence, it has a countable k-system. �

For separable spaces, the class of locally compact spaces and the class of spaces
with point-countable k-systems are exclusive.

Example 4.8. (1) The space Y in Example 2.1 is a separable space with a
countable k-system which is not locally compact.
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(2) There exists a separable locally compact, countably compact spaceX which
has no point-countable weak k-system.

Indeed, let X = βN \ {p} (p ∈ βN \ N) be the subspace of βN. Then X is
a separable locally compact, countably compact space by [7, Theorem 3.6.14].
Suppose that X has a point-countable weak k-system. Then X is compact by
Proposition 1.4, which is a contradiction.

(3) Let Ψ be the separable locally compact Moore space in [9, 5I]. Then Ψ
has no point-countable weak k-system. In fact, if Ψ has a point-countable weak
k-system, then Ψ is metrizable by Theorem 3.12. This contradiction implies that
Ψ has no point-countable weak k-system.
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