[1] Barletta G.: Applications of a critical point result for non-differentiable indefinite functionals. preprint.
[2] Barletta G., Marano S.A.:
Some remarks on critical point theory for locally Lipschitz functions. Glasgow Math. J. 45 (2003), 131-141.
MR 1972703 |
Zbl 1101.58009
[3] Bartolo P., Benci V., Fortunato D.:
Abstract critical point theorems and applications to some nonlinear problems with ``strong'' resonance at infinity. Nonlinear Anal. 7 (1983), 981-1012.
MR 0713209 |
Zbl 0522.58012
[4] Benci V., Rabinowitz P.H.:
Critical point theorems for indefinite functionals. Invent. Math. 52 (1979), 241-273.
MR 0537061 |
Zbl 0465.49006
[5] Chabrowski J.:
Variational Methods for Potential Operator Equations. de Gruyter Ser. Nonlinear Anal. Appl. 24, de Gruyter, Berlin, 1997.
MR 1467724 |
Zbl 1157.35338
[6] Chang K.-C.:
Variational methods for non-differentiable functionals and their applications to partial differential equations. J. Math. Anal. Appl. 80 (1981), 102-129.
MR 0614246 |
Zbl 0487.49027
[7] Clarke F.H.:
Optimization and Nonsmooth Analysis. Classics in Applied Mathematics 5, SIAM, Philadelphia, 1990.
MR 1058436 |
Zbl 0696.49002
[8] Costa D.G., Magalh aes C.:
A unified approach to a class of strongly indefinite functionals. J. Differential Equations 125 (1996), 521-547.
MR 1378765
[9] Ding Y.:
A remark on the linking theorem with applications. Nonlinear Anal. 22 (1994), 237-250.
MR 1258960 |
Zbl 0798.58014
[10] Du Y.:
A deformation lemma and some critical point theorems. Bull. Austral. Math. Soc. 43 (1991), 161-168.
MR 1086730 |
Zbl 0714.58008
[11] Ghoussoub N.:
Duality and Perturbation Methods in Critical Point Theory. Cambridge Tracts in Math. 107, Cambridge Univ. Press, Cambridge, 1993.
MR 1251958 |
Zbl 1143.58300
[12] Hofer H.:
On strongly indefinite functionals with applications. Trans. Amer. Math. Soc. 275 (1983), 185-214.
MR 0678344 |
Zbl 0524.58010
[13] Motreanu D., Varga C.:
Some critical point results for locally Lipschitz functionals. Comm. Appl. Nonlinear Anal. 4 (1997), 17-33.
MR 1460105
[14] Rabinowitz P.H.:
Minimax methods in critical point theory with applications to differential equations. CBMS Reg. Conf. Ser. in Math. 65, Amer. Math. Soc., Providence, 1986.
MR 0845785 |
Zbl 0609.58002
[15] Struwe M.:
Variational Methods. Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems. Second Edition, Ergeb. Math. Grenzgeb. (3) 34, Springer Verlag, Berlin, 1996.
MR 1411681