Previous |  Up |  Next

Article

Keywords:
locally Lipschitz continuous and indefinite functionals; deformation lemmas; critical point theorems
Summary:
In this paper, two deformation lemmas concerning a family of indefinite, non necessarily continuously differentiable functionals are proved. A critical point theorem, which extends the classical result of Benci-Rabinowitz [14, Theorem 5.29] to the above-mentioned setting, is then deduced.
References:
[1] Barletta G.: Applications of a critical point result for non-differentiable indefinite functionals. preprint.
[2] Barletta G., Marano S.A.: Some remarks on critical point theory for locally Lipschitz functions. Glasgow Math. J. 45 (2003), 131-141. MR 1972703 | Zbl 1101.58009
[3] Bartolo P., Benci V., Fortunato D.: Abstract critical point theorems and applications to some nonlinear problems with ``strong'' resonance at infinity. Nonlinear Anal. 7 (1983), 981-1012. MR 0713209 | Zbl 0522.58012
[4] Benci V., Rabinowitz P.H.: Critical point theorems for indefinite functionals. Invent. Math. 52 (1979), 241-273. MR 0537061 | Zbl 0465.49006
[5] Chabrowski J.: Variational Methods for Potential Operator Equations. de Gruyter Ser. Nonlinear Anal. Appl. 24, de Gruyter, Berlin, 1997. MR 1467724 | Zbl 1157.35338
[6] Chang K.-C.: Variational methods for non-differentiable functionals and their applications to partial differential equations. J. Math. Anal. Appl. 80 (1981), 102-129. MR 0614246 | Zbl 0487.49027
[7] Clarke F.H.: Optimization and Nonsmooth Analysis. Classics in Applied Mathematics 5, SIAM, Philadelphia, 1990. MR 1058436 | Zbl 0696.49002
[8] Costa D.G., Magalh aes C.: A unified approach to a class of strongly indefinite functionals. J. Differential Equations 125 (1996), 521-547. MR 1378765
[9] Ding Y.: A remark on the linking theorem with applications. Nonlinear Anal. 22 (1994), 237-250. MR 1258960 | Zbl 0798.58014
[10] Du Y.: A deformation lemma and some critical point theorems. Bull. Austral. Math. Soc. 43 (1991), 161-168. MR 1086730 | Zbl 0714.58008
[11] Ghoussoub N.: Duality and Perturbation Methods in Critical Point Theory. Cambridge Tracts in Math. 107, Cambridge Univ. Press, Cambridge, 1993. MR 1251958 | Zbl 1143.58300
[12] Hofer H.: On strongly indefinite functionals with applications. Trans. Amer. Math. Soc. 275 (1983), 185-214. MR 0678344 | Zbl 0524.58010
[13] Motreanu D., Varga C.: Some critical point results for locally Lipschitz functionals. Comm. Appl. Nonlinear Anal. 4 (1997), 17-33. MR 1460105
[14] Rabinowitz P.H.: Minimax methods in critical point theory with applications to differential equations. CBMS Reg. Conf. Ser. in Math. 65, Amer. Math. Soc., Providence, 1986. MR 0845785 | Zbl 0609.58002
[15] Struwe M.: Variational Methods. Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems. Second Edition, Ergeb. Math. Grenzgeb. (3) 34, Springer Verlag, Berlin, 1996. MR 1411681
Partner of
EuDML logo