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A critical point result for

non-differentiable indefinite functionals

Salvatore A. Marano, Dumitru Motreanu

Abstract. In this paper, two deformation lemmas concerning a family of indefinite, non
necessarily continuously differentiable functionals are proved. A critical point theorem,

which extends the classical result of Benci-Rabinowitz [14, Theorem 5.29] to the above-
mentioned setting, is then deduced.

Keywords: locally Lipschitz continuous and indefinite functionals, deformation lemmas,
critical point theorems

Classification: 35A15, 49J35, 58E05

1. Introduction

The critical point theory for smooth functionals in a Banach space is at present
well established and excellent monographs devoted to various aspects of it are
already available; we mention for instance [14], [11], [15], [5].
In 1981, through techniques of non-smooth analysis previously introduced by

F.H. Clarke (see [7]), K.-C. Chang treated the case of functionals that are only
locally Lipschitz continuous, generalizing both the famous Mountain Pass Theo-
rem (briefly, MPT) of Ambrosetti-Rabinowitz [14, Theorem 2.2] and the Saddle
Point Theorem [14, Theorem 4.6] to this more general framework; vide Theo-
rems 3.4 and 3.3 of [6], respectively. Later on, in 1997, D. Motreanu and C. Varga
made the same for the result of Du [10, Theorem 2.1], where the strict inequality
occurring in the MPT has been weakened to allow also equality; see [13, Theo-
rem 2.1]. Finally, the very recent paper [2] provides extensions of a ‘dual version’
[10, Theorem 2.2] of the MPT besides the Generalized MPT [14, Theorem 5.3] to
the above-mentioned setting.
The main purpose of the present work is to establish a version of the classi-

cal Benci-Rabinowitz’s result [14, Theorem 5.29] for functionals which, roughly
speaking, can be non-smooth but only locally Lipschitz continuous at all possible
critical points having critical value given by the usual minimax procedure, thus
strengthening the analogy between the two theories. The approach of Ding [9]

Work performed under the auspices of G.N.A.M.P.A. of I.N.D.A.M. and partially supported
by M.I.U.R. of Italy, 2003.
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is adopted here. Consequently, we work in the case of linking sets and with the
strict inequality weakened to permit also equality. However, several new non-
trivial difficulties, mainly arising from the fact that the derivative of the involved
functional now exhibits a multifunction (the so-called generalized gradient), have
to be overcome. We first prove two deformation results (Lemmas 3.1 and 3.2
below) which extend Proposition A.18 in [14] and Lemma 3.2 of [9], respectively,
to our framework. From a technical point of view, it represents the most difficult
part of the paper and is presented in Section 3. These results are then exploited
in Section 4 to establish the existence of critical points for non necessarily con-
tinuously differentiable indefinite functionals, even when ‘less than or equal to’
takes the place of ‘less than’ in the standard ‘mountain pass’ inequality; vide
Theorem 4.1. Some applications of this result are examined in [1].

2. Preliminaries

Let (X, ‖ · ‖) be a real Banach space. If V is a subset of X , we write int(V ) for
the interior of V , V for the closure of V , co(V ) for the convex hull of V . When
V is nonempty, x ∈ X , and δ > 0, we define diam(V ) := sup{‖y − z‖ : y, z ∈ V }
besides

B(x, δ) := {z ∈ X : ‖z − x‖ < δ}, Bδ := B(0, δ), Bδ := B(0, δ),

d(x, V ) := inf
z∈V

‖x − z‖, Nδ(V ) := {z ∈ X : d(z, V ) ≤ δ}.

Given x, z ∈ X , the symbol [x, z] indicates the line segment joining x to z, namely

[x, z] := {(1− t)x+ tz : t ∈ [0, 1]}.

We denote by X∗ the dual space of X , while 〈·, ·〉 stands for the duality pairing
between X∗ and X . A function h : X → R is called locally Lipschitz continuous
when to every x ∈ X there correspond a neighbourhood Vx of x as well as a
constant Lx ≥ 0 such that

|h(u)− h(z)| ≤ Lx‖u − z‖ ∀u, z ∈ Vx.

If x, z ∈ X , we write h0(x; z) for the generalized directional derivative of h at the
point x along the direction z, which means

h0(x; z) := lim sup
u→x, t→0+

h(u+ tz)− h(u)

t
.

It is known [7, Proposition 2.1.1] that h0 turns out upper semicontinuous on
X ×X . The symbol ∂h(x) indicates the generalized gradient of the function h at
x, i.e.

∂h(x) :=
{

x∗ ∈ X∗ : 〈x∗, z〉 ≤ h0(x; z) ∀ z ∈ X
}

,
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while, for any nonempty set V ⊆ X ,

∂h(V ) :=
⋃

x∈V

∂h(x).

Since Proposition 2.1.2 of [7] ensures that ∂h(x) is nonempty, convex, and weak*-
compact, it makes sense to put

mh(x) := min{‖x
∗‖X∗ : x∗ ∈ ∂h(x)}.

The following compactness condition of Palais-Smale type at a given level d ∈ R

will be adopted in this paper.

(PS)h,d Every sequence {xn} ⊆ X satisfying h(xn) → d and mh(xn) → 0 pos-
sesses a convergent subsequence.

Moreover, (PS)h will simply denote (PS)h,d for any d ∈ R; see [6, Definition 2].
We say that x ∈ X is a critical point of h when 0 ∈ ∂h(x), which clearly

signifies h0(x; z) ≥ 0 for all z ∈ X . If d ∈ R, we write

Kd(h) := {x ∈ X : h(x) = d, x is a critical point of h}

in addition to

hd := {x ∈ X : h(x) ≤ d}, hd := {x ∈ X : h(x) ≥ d}.

The real number d is called a critical value of h provided Kd(h) 6= ∅.

Lemma 2.1. Let X be reflexive and let h : X → R be locally Lipschitz continu-

ous. If ∂h(V ) is compact in X∗ for any bounded subset V of X then

(h1) h maps bounded sets into bounded sets,

(h2) ∀x ∈ X , ε > 0 there exists a δ > 0 such that ∂h(z) ⊆ Nε(∂h(x)) ∀ z ∈
B(x, δ).

Proof: Assertion (h1) is achieved once we show that the image through h of
each closed ball centered at the origin of X is bounded. Arguing by contradic-
tion, assume there exists a δ0 > 0 such that h(Bδ0) turns out unbounded from

above (a similar reasoning applies when h(Bδ0) is unbounded from below). Then

h(xn) → +∞ along some sequence {xn} ⊆ Bδ0 . Since X is reflexive, passing to

a subsequence if necessary, we may suppose xn ⇀ x in X , with x ∈ Bδ0 . Now,
pick n ∈ N. The Mean Value Theorem [5, Theorem 7.1.1] furnishes two points
zn ∈ [x, xn], y

∗
n ∈ ∂h(zn) such that

(1) h(xn)− h(x) = 〈y∗n, xn − x〉.
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By eventually taking a subsequence we have y∗n → y∗ in X∗, as {y∗n} ⊆ ∂h(Bδ0)
and the latter set is relatively compact. So, owing to (1), h(xn)→ h(x), which is
absurd.
Let us next prove (h2). If the assertion were false for some x ∈ X and ε > 0

then one could construct two sequences {xn} ⊆ X , {y∗n} ⊆ X∗ with the properties
xn → x, y∗n ∈ ∂h(xn) for every n ∈ N,

(2) d(y∗n, ∂h(x)) > ε ∀n ∈ N.

Taking account of the hypotheses, and passing to a subsequence when necessary,
we would get y∗n → y∗ in X∗. By Proposition 2.1.5 in [7] this would imply
y∗ ∈ ∂h(x), whereas from (2) it follows d(y∗, ∂h(x)) ≥ ε. �

3. Two deformation results

Henceforth, X will denote a real Hilbert space with inner product (·, ·) and induced

norm ‖x‖ = (x, x)1/2, x ∈ X , while the function b : X → R will always be assumed
to satisfy the following conditions:

(b1) b is locally Lipschitz continuous on X ;

(b2) ∂b(V ) is compact for any bounded subset V of X .

Now, let h : X → R be defined by

(3) h(x) =
1

2
(Lx, x) + b(x) ∀x ∈ X,

where L : X → X . We shall suppose also that:

(L) L is linear, bounded, and self-adjoint.

(b3) There exists an ε0 > 0 such that

diam(∂b(x)) = 0, x ∈ (hd+ε0 ∩ hd−ε0) \ Kd(h),

for some d ∈ R.

Remark 3.1. Because of (b3) the set ∂b(x) reduces to a singleton whenever

x ∈ (hd+ε0 ∩ hd−ε0) \ Kd(h). Consequently, via Proposition 2.2.4 in [7] and the
second conclusion of Lemma 2.1 we easily realize that b turns out continuously
differentiable at each interior point of (hd+ε0 ∩ hd−ε0) \ Kd(h).

Thanks to (b1) besides (L), the function h is locally Lipschitz continuous.
Hence, arguing exactly as in the proof of [6, Lemma 3.2] provides the following

Proposition 3.1. If d ∈ R, assumptions (b1) and (L) hold true, while the
function h given by (3) fulfils (PS)h,d then for every δ > 0 there exists an ε > 0
such that

(4) inf
{

mh(x) : x ∈ (hd+ε ∩ hd−ε) \ Nδ(Kd(h))
}

> 0.
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Remark 3.2. When Kd(h) = ∅ we have Nδ(Kd(h)) = ∅ and the number ε does
not depend on δ. Thus, in this case the above inequality takes the form

(5) inf
{

mh(x) : x ∈ hd+ε ∩ hd−ε
}

> 0.

To simplify notations, define, for any d ∈ R, δ > 0, ε > 0,

Sδ,ε(h, d) := (hd+ε ∩ hd−ε) \ Nδ(Kd(h)), Sε(h, d) := hd+ε ∩ hd−ε.

Moreover, write

µδ,ε := inf
{

mh(x) : x ∈ Sδ,ε(h, d)
}

,(6)

µε := inf {mh(x) : x ∈ Sε(h, d)}(7)

as long as no confusion can arise. By (4) and (5) one evidently has µδ,ε > 0 for
all δ > 0, µε > 0.
Recall that a function w : X → X is said to be compact when it maps bounded

sets into relatively compact sets.

Proposition 3.2. Let hypotheses (L) and (b1)–(b3) be satisfied. Then to each
δ > 0, ε ∈]0, ε0/3[, r > 0 there corresponds a locally Lipschitz continuous compact
function w : X → X such that

(8) ‖w(x) − ∂b(x)‖ < r ∀x ∈ Sδ,ε(h, d).

Proof: Fix δ, ε, and r as above. For every x ∈ X put

T (x) := α(x)∂b(x) if x ∈ Sδ/3,3ε(h, d), T (x) := 0 otherwise,

where α : X → [0, 1] denotes any continuous function fulfilling

α(x) = 1 ∀x ∈ Sδ,ε(h, d), α(x) = 0 ∀x ∈ X \ Sδ/2,2ε(h, d).

Observe that T : X → X is well defined, because

Sδ/3,3ε(h, d) ⊆ (hd+ε0 ∩ hd−ε0) \ Kd(h)

and (b3) holds. Moreover, if x0 ∈ Sδ/3,3ε(h, d) then there exists an open neigh-

bourhood V0 of x0 which is contained in (hd+ε0 ∩ hd−ε0) \Kd(h). In fact, letting

V0 := h−1(]d − ε0, d+ ε0[) \ Nδ/3(Kd(h)) we clearly have

Sδ/3,3ε(h, d) ⊆ V0 ⊆ (hd+ε0 ∩ hd−ε0) \ Kd(h).
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From diam (∂b(x)) = 0 for all x ∈ V0 besides the second conclusion in Lemma 2.1
it follows that ∂b is (single-valued and) continuous at x0. As x0 ∈ Sδ/3,3ε(h, d) was

arbitrary, the function ∂b turns out continuous on Sδ/3,3ε(h, d). Since α(x) = 0

in X \ Sδ/2,2ε(h, d) we see that also T is continuous on Sδ/3,3ε(h, d). Therefore,

T ∈ C0(X, X). Let us next show that the function T turns out compact. Clearly,
we only need to verify that T (V ) is relatively compact for every bounded set
V ⊆ Sδ/3,3ε(h, d). Pick {yn} ⊆ T (V ). Then

yn = T (xn) = α(xn)∂b(xn)

for some xn ∈ V , n ∈ N. Since 0 ≤ α(xn) ≤ 1, passing to a subsequence
if necessary, we may suppose α(xn) → α∗ in R. By eventually taking a subse-
quence one has ∂b(xn)→ y∗, because {xn} is bounded and (b2) holds. Therefore,

T (xn) → α∗y∗, namely yn → y with y := α∗y∗. This means that T (V ) is com-
pact. Now, Proposition A.23 of [14] can be applied, and we obtain a locally
Lipschitz continuous compact function w : X → X such that ‖w(x) − T (x)‖ < r
in X , from which the conclusion follows. �

Define, for any s ∈ R
+
0 ,

(9) σ(s) :=







1 if s ∈ [0, 1],

1

s
otherwise.

Proposition 3.3. Let the assumptions of Proposition 3.2 and (PS)h,d be sat-

isfied. Then to each δ > 0 there corresponds an ε ∈]0, ε0/3[ such that if r ∈
]0, µδ,ε/2[ then the function

(10) v(x) := σ(‖Lx+ w(x)‖) [Lx+ w(x)] , x ∈ X,

where w is given by Proposition 3.2 for ε := ε, is locally Lipschitz continuous.
Moreover, one has

‖v(x)‖ ≤ 1 ∀x ∈ X,(11)

(Lx+ ∂b(x), v(x)) > min{µδ,ε(µδ,ε − r), µδ,ε − 2r} ∀x ∈ Sδ,ε(h, d).(12)

Proof: Fix δ > 0. Using Proposition 3.1 yields an ε > 0 such that µδ,ε > 0,
with µδ,ε as in (6). Without loss of generality we can suppose 3ε < ε0. Now,
pick r ∈]0, µδ,ε/2[. Proposition 3.2 provides a locally Lipschitz continuous and
compact function w : X → X fulfilling (8). The locally Lipschitz continuity of v
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immediately follows from the properties of L, w, besides σ. Since (11) is obvious,
it remains to check that v satisfies (12). If x ∈ Sδ,ε(h, d) then by (8) we have

µδ,ε ≤ ‖Lx+ ∂b(x)‖ ≤ ‖Lx+ w(x)‖ + ‖w(x) − ∂b(x)‖ < ‖Lx+ w(x)‖ + r,

thus

(13) ‖Lx+ w(x)‖ > µδ,ε − r.

Two situations may now occur. When ‖Lx+w(x)‖ ≤ 1, exploiting (8) as well as
(9) leads to

(Lx+ ∂b(x), v(x)) = (Lx+ ∂b(x), Lx+ w(x))

≥ ‖Lx+ ∂b(x)‖(‖Lx+ ∂b(x)‖ − ‖w(x)− ∂b(x)‖) ≥ µδ,ε(µδ,ε − r).

If ‖Lx+ w(x)‖ > 1 then through (9), (8), and (13) we obtain

(Lx+ ∂b(x), v(x)) =
1

‖Lx+ w(x)‖
(Lx+ ∂b(x), Lx+ w(x))

≥ ‖Lx+ w(x)‖ − ‖w(x) − ∂b(x)‖ > µδ,ε − 2r.

Therefore, in either case (12) holds true. �

Remark 3.3. For Kd(h) = ∅, inequality (12) becomes

(14) (Lx+ ∂b(x), v(x)) > min{µε(µε − r), µε − 2r} ∀x ∈ Sε(h, d),

with µε given by (5).

Remark 3.4. Reading the preceding proof we immediately realize that the more
general condition r ∈]0, µδ,ε[ can take the place of r ∈]0, µδ,ε/2[. However, this
latter guarantees also that the right-hand side of (12) is positive, which will be
useful later in the paper.

The next deformation lemma extends Proposition A.18 of [14] to the framework
of the present paper; see also [6, Theorem 3.1]. Write

(15) µ̂r := min{µε(µε − r), µε − 2r}, r ∈]0, µε/2[ .

Lemma 3.1. Let conditions (b1)–(b3), (3), (L), and (PS)h,d be satisfied. If

Kd(h) = ∅ while r ∈]0, µε/2[ then for every ε ∈]0, ε[ there exists η ∈ C0([0, 1] ×
X, X) such that

(i1) ‖η(t, x)− x‖ ≤ t in [0, 1]× X ,

(i2) η(t, x) = x ∀ t ∈ [0, 1] provided x /∈ Sε(h, d),

(i3) ∀x ∈ X the function t 7→ h(η(t, x)) is monotonically decreasing on [0, 1],

(i4) h(x)− h(η(1, x)) > µ̂r whenever η(t, x) ∈ Sε(h, d) for almost all t ∈ [0, 1],

(i5) η(t, x) = exp(θ(t, x)L)x+K(t, x), (t, x) ∈ [0, 1]×X , where θ ∈ C0([0, 1]×
X) is bounded and K : [0, 1]× X → X is compact.
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Proof: Fix r ∈]0, µε/2[. Through Proposition 3.3 we obtain a locally Lipschitz
continuous function v : X → X fulfilling (14) besides (11). Next, pick ε ∈]0, ε[
and define V (x) := α(x)v(x), x ∈ X , where α : X → [0, 1] denotes a locally
Lipschitz continuous function such that

(16) α(x) = 1 ∀x ∈ Sε(h, d), α(x) = 0 ∀x ∈ X \ Sε(h, d).

The basic existence-uniqueness theorem for ordinary differential equations in Ba-
nach spaces ensures that the Cauchy problem

(17)
dη

dt
= −V (η), η(0, x) = x,

with x ∈ X , has a unique solution η(·, x) : R → X , while the continuous depen-
dence of solutions to (17) on the initial datum x forces η ∈ C0([0, 1] × X, X).
Now, integrating (17) and using (11) yields immediately (i1).
If x ∈ X \ Sε(h, d) then, by (16), V ≡ 0 on some neighbourhood of x. Conse-

quently, η(t, x) = x for all t ∈ [0, 1], which shows (i2).
Let us next verify (i3). To this end, fix x ∈ X and write ϕ(t) := h(η(t, x)),

t ∈ [0, 1]. One evidently has

(18) h(η(t′′, x))− h(η(t′, x)) =

∫ t′′

t′
ϕ′(s) ds ∀ t′, t′′ ∈ [0, 1]

because ϕ : [0, 1] → R is locally Lipschitz continuous. The conclusion is thus
achieved once we prove that ϕ′(t) ≤ 0 almost everywhere in [0, 1]. Thanks to [6,
Proposition 9] as well as (17) it results

(19) ϕ′(t) ≤ −min{(x∗, V (η(t, x))) : x∗ ∈ ∂h(η(t, x))} at almost all t ∈ [0, 1].

When η(t, x) ∈ Sε(h, d), taking account of (16) and (14) we get

(x∗, V (η(t, x))) = (Lη(t, x) + ∂b(η(t, x)), v(η(t, x))) > µ̂r.

By (19) it implies

(20) ϕ′(t) < −µ̂r < 0.

If η(t, x) ∈ X \ Sε(h, d) then, owing to (14) besides (16),

(x∗, V (η(t, x))) = α(η(t, x))(x∗, v(η(t, x))) ≥ 0, x∗ ∈ ∂h(η(t, x)).

In view of (19) this forces ϕ′(t) ≤ 0. Hence ϕ′(t) ≤ 0 for almost every t ∈ [0, 1],
and (i3) follows.
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Finally, since (i4) is an easy consequence of (18) and (20), it remains to ve-
rify (i5). Through (10) we can write V (x) = ω(x) [Lx+ w(x)], with

ω(x) := α(x)σ(‖Lx + w(x)‖) ∀x ∈ X.

Problem (17) thus becomes

dη

dt
+ ω(η)Lη = −ω(η)w(η), η(0, x) = x.

Arguing exactly as in the proof of [14, Proposition A.18] yields

η(t, x) = exp(θ(t, x)L)x +K(t, x), (t, x) ∈ [0, 1]× X,

where θ(t, x) := −
∫ t
0 ω(η(s, x)) ds and

K(t, x) := −

∫ t

0
[exp (θ(s, x) − θ(t, x))L]ω(η(s, x))w(η(s, x)) ds.

Obviously, the function θ : [0, 1]×X → R turns out continuous besides bounded.
Since (i1) holds, w is compact, while 0 ≤ ω(x) ≤ 1 in X , the same technique
exploited at p. 86 of [14] guarantees here that the function K : [0, 1]× X → X is
compact. �

We now come to the deformation result below, which extends Lemma 2.1 of
[9] to our framework. Set

(21) µ̂δ,r := min{µδ,ε(µδ,ε − r), µδ,ε − 2r}, r ∈]0, µδ,ε/2[ .

Moreover, write id for the identity map of X .

Lemma 3.2. Let (b1)–(b3), (3), (L), and (PS)h,d be satisfied. If A, B are two
nonempty closed subsets of X such that

(22) A ∩ B = ∅, A ⊆ hd, B ⊆ hd, Kd(h) ∩ B = ∅

then there exist η ∈ C0(R × X, X) in addition to ε > 0 with the following
properties:

(j1) η(t, ·), t ∈ R, is a homeomorphism and η(0, ·) = id;

(j2) η(t, ·)|A = id|A ∀ t ∈ R;

(j3) ∀x ∈ B the function t 7→ h(η(t, x)) turns out monotonically decreasing on
[0, 1];

(j4) η(1, B) ⊆ hd−ε;

(j5) assertion (i5) of Lemma 3.1 holds.
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Proof: Thanks to condition (PS)h,d the set Kd(h) is compact. Thus, using the
assumption Kd(h)∩B = ∅ we can find a δ > 0 such that Nδ(Kd(h))∩Nδ(B) = ∅.
Now, define

C := X \ (Sε/2(h, d) ∩ Nδ/2(B)), D := Sε/3(h, d) ∩ Nδ/3(B),

where ε > 0 is given by Proposition 3.3, and pick any locally Lipschitz continuous
function α : X → [0, 1] fulfilling

(23) α(x) = 0 ∀x ∈ C, α(x) = 1 ∀x ∈ D.

If r ∈]0, µδ,ε/2[ then Proposition 3.3 provides a locally Lipschitz continuous func-
tion v : X → X that complies with (11)–(12). Finally, write, whenever x ∈ X ,

(24) V (x) :=







δ

3
α(x)v(x) if x ∈ Sε(h, d) ∩ Nδ(B),

0 otherwise.

Clearly, V is locally Lipschitz continuous also. Moreover, ‖V (x)‖ ≤ δ/3 in X .
Through the basic existence-uniqueness theorem for ordinary differential equa-
tions in Banach spaces we therefore obtain a function ζ ∈ C0(R×X, X) satisfying

(25)
dζ(t, x)

dt
= −V (ζ(t, x)), ζ(0, x) = x ∀ (t, x) ∈ R × X.

Let B1 := ζ([0, 1]× B). If x ∈ B then

‖ζ(t, x)− x‖ =
∥

∥

∫ t

0

dζ(s, x)

ds
ds

∥

∥ =
∥

∥

∫ t

0
V (ζ(s, x)) ds

∥

∥ ≤
δ

3
, t ∈ [0, 1],

namely

(26) B1 ⊆ Nδ/3(B).

We claim that the set B1 is closed. To verify this, pick a sequence {yn} ⊆ B1
converging to some y ∈ X . Since yn = ζ(tn, xn) with (tn, xn) ∈ [0, 1] × B,
by eventually taking a subsequence we can suppose tn → t in [0, 1]. Define
zn = ζ(t, xn), n ∈ N, and observe that, on account of (25),

‖yn − zn‖ =
∥

∥

∫ tn

t

dζ(s, xn)

ds
ds

∥

∥ ≤
δ

3
|tn − t| ∀n ∈ N.

Hence, zn → y. Through the properties of ζ we thus achieve xn = ζ(−t, zn),
n ∈ N, ζ(−t, zn) → ζ(−t, y). Setting x = ζ(−t, y) one has xn → x, the point x
belongs to B because B is closed, while

y = ζ(t, x) ∈ ζ([0, 1]× B) = B1,
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which represents the desired conclusion. Our next goal is to show that

(27) ∀x ∈ B the function t 7→ h(ζ(t, x)) turns out decreasing on [0, 1].

Fix x ∈ B and write ϕ(t) := h(ζ(t, x)), t ∈ [0, 1]. Arguing as in the proof of
Lemma 3.1 we only need the inequality ϕ′(t) ≤ 0 for almost every t ∈ [0, 1].
Thanks to [6, Proposition 9] besides (25) it results

(28) ϕ′(t) ≤ −min{(x∗, V (ζ(t, x))) : x∗ ∈ ∂h(ζ(t, x))} for almost all t ∈ [0, 1].

If ζ(t, x) ∈ Sε(h, d)∩Nδ(B) then, bearing in mind (24), the choice of δ, and (12),
we get

(29) (Lζ(t, x) + ∂b(ζ(t, x)), V (ζ(t, x))) ≥
δ

3
α(ζ(t, x))µ̂δ,r ≥ 0,

with µ̂δ,r given by (21). Due to (28) this implies ϕ′(t) ≤ 0. A simple reasoning
yields ϕ′(t) = 0 whenever η(t, x) ∈ X \ (Sε(h, d) ∩ Nδ(B)). Hence, in either case,
ϕ′(t) ≤ 0, and the assertion follows. We now proceed to verify that

(30) A ∩ B1 = ∅.

If (30) were false one could find (t0, x0) ∈]0, 1]×B fulfilling ζ(t0, x0) ∈ A. Because
of assumption (22) and (27) it forces

(31) h(ζ(t, x0)) = d ∀ t ∈ [0, t0].

Using (26) we thus obtain ζ(t, x0) ∈ D, t ∈ [0, t0], which leads to

(32) h(ζ(t0, x0)) = h(ζ(0, x0)) +

∫ t0

0
ϕ′(s) ds ≤ d −

δ

3
µ̂δ,rt0 < d

by means of (23), (29), and (28). However, (32) contradicts (31) written for t = t0.
Note that from (30) it follows d(x, A) + d(x, B1) > 0 at each point x ∈ X . Let

A1 = {x ∈ X : α1(x) ≤ 1/2}, where

α1(x) :=
d(x, A)

d(x, A) + d(x, B1)
, x ∈ X.

Since the function α1 is evidently continuous, A1 turns out closed. Moreover,
one has A ⊆ int(A1) as well as A1 ∩ B1 = ∅. Pick a locally Lipschitz continuous
function α̂ : X → [0, 1] satisfying

α̂(x) = 0 ∀x ∈ A1, α̂(x) = 1 ∀x ∈ B1,
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and define

(33) V̂ (x) := α̂(x)V (x), x ∈ X,

with V given by (24). It is clear that the function V̂ : X → X is locally Lipschitz

continuous, ‖V̂ (x)‖ ≤ δ/3 in X , V̂ |A1 ≡ 0, while V̂ |B1 = V |B1 . If η : R×X → X
denotes the solution to the Cauchy problem

(34)
dη(t, x)

dt
= −V̂ (η(t, x)), η(0, x) = x,

where x ∈ X , then classical results concerning ordinary differential equations in
Banach spaces ensure that η(t, ·) : X → X is a homeomorphism, thus showing
assertion (j1).
To verify (j2) we first point out that for every x ∈ A it results x ∈ int(A1) and

so V̂ ≡ 0 on some neighbourhood of x. Because of (34) this yields η(t, x) = x,
t ∈ R, which represents the desired conclusion.
As V̂ |B1 = V |B1 we then have

−V̂ (ζ(t, x)) = −V (ζ(t, x)) =
dζ(t, x)

dt
∀ (t, x) ∈ [0, 1]× B.

By the uniqueness of the solutions to (34) it follows

(35) ζ(t, x) = η(t, x) in [0, 1]× B.

Hence, assertion (j3) is an immediate consequence of (27).
Let us next prove (j4). Put

(36) ε := min

{

ε

3
,
δ

3
µ̂δ,r

}

and suppose, contrary to our claim, that there exists an x0 ∈ B fulfilling

(37) h(η(1, x0)) > d − ε.

Since x0 ∈ B, (35) with x = x0, (27), (22), besides (37) lead to

d − ε < h(η(t, x0)) ≤ d ∀ t ∈ [0, 1].

Gathering (34) and (33) together provides

‖η(t, x0)− x0‖ =
∥

∥

∫ t

0

dη(s, x0)

ds
ds

∥

∥ =
∥

∥

∫ t

0
V̂ (η(s, x0)) ds

∥

∥ ≤
δ

3
, t ∈ [0, 1].
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Therefore, η(t, x0) ∈ D because ε ≤ ε/3. Thanks to (35), (28), (24), (23), the
choice of δ, and (12) we get

dh(η(t, x0))

dt
≤ −

δ

3
µ̂δ,r almost everywhere in [0, 1].

In view of (36) this forces

h(η(1, x0)) − h(x0) ≤ −
δ

3
µ̂δ,r ≤ −ε.

As x0 ∈ B we actually have

h(η(1, x0)) ≤ h(x0)− ε ≤ d − ε,

which contradicts (37). The proof of assertion (j4) is thus complete.
Finally, if one writes for any x ∈ X ,

ω(x) :=







δ

3
α̂(x)α(x)σ(‖Lx + w(x)‖) when x ∈ Sε(h, d) ∩ Nδ(B),

0 otherwise,

then Problem (34) takes the form

dη

dt
+ ω(η)Lη = −ω(η)w(η), η(0, x) = x.

Hence, the same arguments exploited to achieve (i5) of Lemma 3.1 ensure here
that (j5) is true. �

Remark 3.5. Examining this proof we realize that the conclusion of Lemma 3.2
could be more precisely stated as follows:

There exists a δ > 0 such that to each r ∈]0, µδ,ε/2[ there corresponds a function

η ∈ C0(R × X, X) enjoying properties (j1)–(j5), with ε as in (36).

The section concludes with two elementary examples, showing that very natural
non-smooth functionals h can be treated through the above results. In both cases
one has X := R, L ≡ 0, besides d := 0.

Example 3.1. Define b(x) := |x| for all x ∈ X . Then (b1) is obviously satisfied,
while (b2), (b3), and (PS)h,d immediately come out from the expression of ∂b,
namely (vide [7, p. 28])

∂b(x) = {−1} ∀x < 0, ∂b(0) = [−1, 1], ∂b(x) = {1} ∀x > 0.

Example 3.2. Let b : X → R given by, for every x ∈ X ,

b(x) := x2 sin
1

x
if x 6= 0, b(0) := 0.

The function b is differentiable, but not continuously, on X . However, it fulfils
(b1), because b′ turns out bounded. Since

∂b(x) =

{

2x sin
1

x
− cos

1

x

}

if x 6= 0, ∂b(0) = [−1, 1],

an easy argument guarantees that (b2), (b3), and (PS)h,d hold true too.
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4. Existence of critical points

In this section we establish a version of Benci-Rabinowitz’s result (see [4, The-
orem 1.4] as well as [14, Theorem 5.29]) where the involved functional is not
necessarily continuously differentiable on the whole space. We further weaken the
usual strict inequality to allow also equality, which is already known concerning
the smooth case [9, Theorem 2.1]. Besides those of [4], [14], [9], significant results
on the subject were obtained in [3], [12], [8].
The next definition of linking will be adopted here; vide for instance [14, p. 31].

Let X = X1 ⊕ X2 with X2 = X⊥
1 , the orthogonal complement of the subspace

X1, and let Pi : X → Xi be the projector of X onto Xi, i = 1, 2. Put

S := {Φ ∈ C0([0, 1]× X, X) : Φ(0, ·) = id,

P2Φ(t, x) = P2x − K(t, x), where K : [0, 1]× X → X2 is compact}.

If S, Q ⊆ X are nonempty, S is closed, Q ⊆ X̃, a given subspace of X , while ∂Q
denotes the boundary of Q in X̃, then we say that S and ∂Q link when for every
Φ ∈ S fulfilling Φ(t, ∂Q) ∩ S = ∅, t ∈ [0, 1], one has Φ(t, Q) ∩ S 6= ∅, t ∈ [0, 1]. As
regards meaningful examples of linking sets we cite [14, Examples 5.22 and 5.26].
The symbol Γ indicates the family of γ ∈ C0([0, 1]×X, X) with the properties

(Γ1) γ(0, x) = x ∀x ∈ X ,

(Γ2) γ(t, x) = x, (t, x) ∈ [0, 1]× ∂Q, and

(Γ3) γ(t, x) = exp(θ(t, x)L)x+K(t, x) ∀ (t, x) ∈ [0, 1]×X , where θ ∈ C0([0, 1]×
X) while K : [0, 1]× X → X is compact.

The following assumption will be taken up in addition to those listed before.

(L′) Lx = L1P1x+ L2P2x, x ∈ X , where Li : Xi → Xi is linear, bounded, and

self-adjoint, i = 1, 2.

Finally, write

f(x) :=
1

2
(Lx, x) + b(x) ∀x ∈ X.

Theorem 4.1. Let (b1)–(b2), (L
′), and (PS)f be satisfied. Suppose S links with

∂Q, S ⊆ X1, Q is bounded, while ∂Q ∩ S = ∅. If, moreover,

(f1) f |∂Q ≤ a ≤ f |S for some a ∈ R,

(f2) setting
c := inf

γ∈Γ
sup
x∈Q

f(γ(1, x))

there exists ε0 > 0 such that diam (∂b(x)) = 0 for all x ∈ (fc+ε0 ∩f c−ε0)\
Kc(f),

then one has

(k1) c ≥ a,

(k2) Kc(f) \ ∂Q 6= ∅, and

(k3) Kc(f) ∩ S 6= ∅ provided c = a.
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Proof: We first note that c < +∞. Indeed, the function γ(t, x) := x on [0, 1]×X
belongs to Γ while, taking into account (h1) of Lemma 2.1, the set f(Q) turns out
bounded because so is Q. Let us show assertion (k1). Thanks to the assumptions,
Proposition 5.32 in [14] can be applied. Consequently, for every γ ∈ Γ there is
a point xγ ∈ Q fulfilling γ(1, xγ) ∈ S. By (f1) it implies supx∈Q f(γ(1, x)) ≥ a.
As γ was arbitrary, we actually have c = infγ∈Γ supx∈Q f(γ(1, x)) ≥ a, which
represents the desired conclusion. Two situations may now occur, namely c > a
or c = a.
If c > a then (f1) forces Kc(f) \ ∂Q = Kc(f). Suppose, contrary to (k2), that

Kc(f) = ∅. Proposition 3.1 provides an ε > 0 satisfying µε > 0, where µε is given
by (5) for h := f and d := c. Without loss of generality, we may assume

(38) ε < min

{

c − a

2
,
ε0
3

}

.

Therefore, both h and d satisfy all the hypotheses of Lemma 3.1. Pick r ∈]0, µε/2[
as well as ε ∈ ]0,min {ε, µ̂r/2}[, with µ̂r as in (15). Through the above-mentioned
result we obtain a function η ∈ C0([0, 1]×X, X) enjoying properties (i1)–(i5). One
has

(39) η(1, fc+ε) ⊆ fc−ε.

In fact, if (39) were false then η(1, x0) /∈ fc−ε for some x0 ∈ fc+ε. On account of
(i3) and (i1) this would imply

c − ε < f(η(1, x0)) ≤ f(η(t, x0)) ≤ f(η(0, x0)) = f(x0) ≤ c+ ε ∀ t ∈ [0, 1],

i.e. η(t, x0) ∈ Sε(f, c), t ∈ [0, 1]. Owing to the choice of ε besides (i4) we would
arrive at

c − ε < f(η(1, x0)) < f(x0)− µ̂r ≤ c+ ε − µ̂r < c − ε,

which is clearly absurd. Hence, (39) holds. Let us next verify that η ∈ Γ.
Conditions (Γ1) and (Γ3) immediately follow from (i1) and (i5), respectively. So,
it remains to check (Γ2). If x ∈ ∂Q then x /∈ Sε(f, c) because, by (38) in addition
to (f1),

f(x) ≤ a = c − (c − a) < c −
c − a

2
< c − ε.

Using (i2) yields η(t, x) = x for all t ∈ [0, 1]. As x was arbitrary, (Γ2) is true.
Choose any γε ∈ Γ such that

(40) sup
x∈Q

f(γε(1, x)) < c+ ε.

The same arguments adopted in [14, p. 33] ensure here that (t, x) 7→ η(t, γε(t, x)),
(t, x) ∈ [0, 1]× X , belongs to Γ. Therefore, c ≤ supx∈Q f(η(1, γε(1, x))). On the
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other hand, gathering (40) and (39) together provides η(1, γε(1, Q)) ⊆ fc−ε, which
is impossible.
We now come to the case c = a. Since ∂Q ∩ S = ∅, the conclusion will be

achieved once one verifies (k3). Suppose on the contrary Kc(f) ∩ S = ∅ and
define h := −f , d := −c, A := ∂Q, B := S. As the hypotheses of Lemma 3.2 are
evidently fulfilled, we get a function η ∈ C0(R × X, X) besides a number ε > 0
with properties (j1)–(j5). Let γε ∈ Γ satisfy (40) and let

γε(t, x) := η(t, ·)−1(γε(t, x)) ∀ (t, x) ∈ [0, 1]× X.

One clearly has γε ∈ Γ. Indeed, condition (Γ1) immediately follows from (j1) while
an elementary argument based on (j2) and the fact that η(t, ·)−1(x) = η(−t, x),
(t, x) ∈ R × X , yields (Γ2). Finally, (Γ3) is a simple consequence of (j5), because
γε ∈ Γ while γε(t, x) = η(−t, γε(t, x)) in [0, 1]×X ; see [14, p. 33] for more details.
At this point, Proposition 5.32 of [14] provides an xε ∈ Q such that γε(1, xε) ∈ S.
So, owing to (40) besides (j4) of Lemma 3.2, we get

c+ ε ≤ f(η(1, γε(1, xε))) = f(γε(1, xε)) < c+ ε,

which is absurd. This completes the proof. �

When b ∈ C1(X), Theorem 4.1 takes the following form, which coincides with
Theorem 2.1 of [9] and hence includes Benci-Rabinowitz’s result as a special case.

Theorem 4.2. Let b ∈ C1(X) and let (b2), (L
′), (PS)f be satisfied. Suppose S

links with ∂Q, S ⊆ X1, Q is bounded, while ∂Q ∩ S = ∅. If, moreover, (f1) of
Theorem 4.1 holds then f possesses a critical value c ≥ a.

Proof: Set, as before, c := infγ∈Γ supx∈Q f(γ(1, x)). The same reasonings made
to establish Theorem 4.1 guarantee here that c ≥ a. Now, the conclusion is a
direct consequence of that result because (f2) holds true. �
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