Previous |  Up |  Next

Article

Keywords:
Corson countably compact space; $G_\delta$ point; Corson compact space; Valdivia compact space
Summary:
We show that a compact space $K$ has a dense set of $G_\delta$ points if it can be covered by countably many Corson countably compact spaces. If these Corson countably compact spaces may be chosen to be dense in $K$, then $K$ is even Corson.
References:
Argyros S., Mercourakis S.: On weakly Lindelöf Banach spaces. Rocky Mountain J. Math. 23 (1993), 395-446. MR 1226181 | Zbl 0797.46009
Argyros S., Mercourakis S., Negrepontis S.: Functional analytic properties of Corson compact spaces. Studia Math. 89 (1988), 197-229. MR 0956239 | Zbl 0656.46014
Gul'ko S.P.: Properties of sets that lie in $\Sigma$-products (in Russian). Dokl. Akad. Nauk SSSR 237 (1977), 3 505-508. MR 0461410
Kalenda O.: Continuous images and other topological properties of Valdivia compacta. Fund Math. 162 (1999), 2 181-192. MR 1734916 | Zbl 0989.54019
Kalenda O.: A characterization of Valdivia compact spaces. Collectanea Math. 51 1 (2000), 59-81. MR 1757850 | Zbl 0949.46004
Kalenda O.: Embedding of the ordinal segment $[0,ømega_1]$ into continuous images of Valdivia compacta. Comment. Math. Univ. Carolinae 40 4 (1999), 777-783. MR 1756552 | Zbl 1009.54017
Kalenda O.: Valdivia compact spaces in topology and Banach space theory. Extracta Math. 15 1 (2000), 1-85. MR 1792980 | Zbl 0983.46021
Kalenda O.: On the class of continuous images of Valdivia compacta. Extracta Math. 18 (2003), 1 65-80. MR 1989298 | Zbl 1159.46306
Kubiś W., Uspenskij V.: A compact group which is not Valdivia compact. Proc. Amer. Math. Soc., to appear. MR 2138892
Michael E., Rudin M.E.: A note on Eberlein compacts. Pacific J. Math. 72 (1977), 2 487-495. MR 0478092 | Zbl 0345.54020
Noble N.: The continuity of functions on Cartesian products. Trans. Amer. Math. Soc. 149 (1970), 187-198. MR 0257987 | Zbl 0229.54028
Orihuela J.: On Weakly Lindelöf Banach spaces. Progress in Funct. Anal. K.D. Bierstedt, J. Bonet, J. Horváth, M. Maestre Elsevier Sci. Publ. B.V. (1992), 279-291. MR 1150753
Sokolov G.A.: On some classes of compact spaces lying in $\Sigma$-products. Comment. Math. Univ. Carolinae 25 (1984), 219-231. MR 0768809 | Zbl 0577.54014
Valdivia M.: Resolutions of the identity in certain Banach spaces. Collectanea Math. 39 (1988), 2 127-140. MR 1027683 | Zbl 0718.46006
Valdivia M.: On certain compact topological spaces. Rev. Mat. Univ. Complut. Madrid 10 1 (1997), 81-84. MR 1452564 | Zbl 0870.54025
Partner of
EuDML logo