[1] Abou Hashish M.: Applications trilinéaires alternées et courbes cubiques elliptiques généralisées classifications et utilisations cryptographiques. Thèse de Doctorat, no. 687, Institut National des Sciences Appliquées de Toulouse, 2003.
[2] Bénéteau L.:
Ordre minimum des boucles de Moufang commutatives de classe $2$ (resp. $3$). Ann. Fac. Sci. Toulouse Math. (5) 3 (1981), 75-88.
MR 0624133 |
Zbl 0482.20044
[3] Bénéteau L.:
Extended triple systems: geometric motivations and algebraic constructions. Discrete Math. 208/209 (1999), 31-47.
MR 1725518
[4] Bénéteau L., Kepka P.:
Quasigroupes trimédiaux et boucles de Moufang commutatives libres. C.R. Acad. Sci. Paris, t. 300, Série I, no. 12 (1985), 377-380.
MR 0794742
[5] Bénéteau L., Lacaze J.:
Symplectic trilinear form and related designs and quasigroups. Comm. Algebra 16 (5) (1988), 1035-1051.
MR 0926336
[6] Bénéteau L., Razafimanantsoa G.:
Boucles de Moufang k-nilpotentes minimales. C.R. Acad. Sci. Paris, Série I 306 (1988), 743-746.
MR 0948765
[7] Buekenhout F.:
Generalized elliptic cubic curves. Part 1, Finite Geometries, (2001), 35-48.
MR 2060755 |
Zbl 1014.51003
[8] Chein O., Pflugfelder H.O., Smith J.D.H.:
Quasigroups and Loops; Theory and Applications. Sigma Series in Pure Mathematics, vol. 8, Heldermann, Berlin, 1990.
MR 1125806 |
Zbl 0719.20036
[9] Cohen A., Helminck A.:
Trilinear alternating forms on a vector space of dimension $7$. Comm. Algebra 16.1 (1988), 1-25.
MR 0921939 |
Zbl 0646.15019
[10] Djokovic D.Z.:
Classification of $3$-vectors of a real $8$-dimensional vector space. Linear and multilinear algebra (1983), 3-39.
MR 0691457
[11] Griess R.L., Jr.:
A Moufang loop, the exceptional Jordan algebra, and a cubic form in $27$ variables. J. Algebra 131 1 (1990), 281-295.
MR 1055009 |
Zbl 0718.17028
[12] Gurewitch G.B.:
Foundations of the Theory of Algebraic Invariants. P. Noordhoff LTD, Groningen, Netherlands, 1964.
MR 0183733
[13] Keedwell A.D.:
More simple constructions for elliptic cubic curves with small numbers of points. Pure Math. Appl. Ser. A, Vol. 3, No. 3-4, (1992), 199-214.
MR 1249252 |
Zbl 0786.51009
[14] Kepka T., Němec P.:
Commutative Moufang loops and distributive groupoids of small orders. Czechoslovak Math. J. 31 (106) (1981), 633-669.
MR 0631607
[15] Kepka T.:
Structure of triabelian quasigroups. Comment. Math. Univ. Carolinae 17 (1976), 229-240.
MR 0407182 |
Zbl 0338.20097
[16] Koblitz N.:
A course in Number Theory and Cryptography. Second Edition, New-York, Springer-Verlag, 1994.
MR 1302169 |
Zbl 0819.11001
[17] Manin Yu.I.:
Cubic Forms, Algebra, Geometry, Arithmetic. North-Holland, Amsterdam, London, 1974.
MR 0833513 |
Zbl 0582.14010
[18] Němec P.:
Commutative Moufang loops corresponding to linear quasigroups. Comment. Math. Univ. Carolinae 29 (1988), 303-308.
MR 0957400
[19] Noui L.:
Formes multilinéaires alternées. Thèse de troisième cycle, Université de Montpellier II, 1995.
Zbl 0831.15017
[20] Razafimanantsoa G.: La k-nilpotence minimale dans les boucles de Moufong commutatives; classification partielle des applications trilinéaires alternées. Thèse no. 3511, Univ. Toulouse III, 1988.
[21] Revoy Ph.:
Fomes trilinéaires alternées de rang $7$. Bull. Sci. Math. $2^e$112, (1988), 357-368.
MR 0975369
[22] Schoof R.:
Counting points on elliptic curves over finite fields. Journal de Théorie des nombres de Bordeaux VII, (1995), 219-254.
MR 1413578 |
Zbl 0852.11073
[23] Schouten J.A.: Klassifizierung der alternierender Grössen dritten Grades in $7$ Dimensionen. Rend. Circ. Nat. di Palermo 55 (1931), 137-156.
[24] Schwenk J.:
A classification of abelian quasigroups. Rend. Math. Appl. (7) 15 (2) (1995), 161-172.
MR 1339239 |
Zbl 0831.05015
[25] Smith J.D.H.:
Finite equationally complete entropic quasigroups. Contribution to General Algebra, Proc. Klagenfurt Conf., 1978 pp.345-355.
MR 0537430 |
Zbl 0412.20070
[26] Vinberg E.B., Elasvili A.G.:
Classification of trivectors of a nine-dimensional space. Trudy Sem. Vekt. Tenz. Analizu, no. XVIII, (1978), 197-223.
MR 0504529
[27] Westwick R.:
Real trivectors of rank seven. Linear and Multilinear Algebra (1980), 183-204.
MR 0630147 |
Zbl 0439.15014