Article
Keywords:
left conjugacy closed loop; multiplication group; nucleus
Summary:
A loop $Q$ is said to be left conjugacy closed (LCC) if the set $\{L_x; x \in Q\}$ is closed under conjugation. Let $Q$ be such a loop, let $\Cal L$ and $\Cal R$ be the left and right multiplication groups of $Q$, respectively, and let $\operatorname{Inn} Q$ be its inner mapping group. Then there exists a homomorphism $\Cal L \to \operatorname{Inn} Q$ determined by $L_x \mapsto R^{-1}_xL_x$, and the orbits of $[\Cal L, \Cal R]$ coincide with the cosets of $A(Q)$, the associator subloop of $Q$. All LCC loops of prime order are abelian groups.
References:
[1] Basarab A.S.:
Klass LK-lup. Matematicheskie issledovanija 120 (1991), 3-7.
MR 1121425
[3] Belousov V.D.:
Osnovy teorii kvazigrupp i lup. Nauka, Moskva, 1967.
MR 0218483
[5] Drápal A.:
Conjugacy closed loops and their multiplication groups. J. Algebra 272 (2004), 838-850.
MR 2028083 |
Zbl 1047.20049
[6] Drápal A.: Structural interactions of conjugacy closed loops. submitted.
[7] Goodaire E.G., Robinson D.A.:
A class of loops which are isomorphic to all loop isotopes. Canad. J. Math. 34 (1982), 662-672.
MR 0663308 |
Zbl 0467.20052
[8] Kiechle H., Nagy G.P.:
On the extension of involutorial Bol loops. Abh. Math. Sem. Univ. Hamburg 72 (2002), 235-250.
MR 1941556 |
Zbl 1016.20051
[9] Kinyon M.K., Kunen K., Phillips J.D.:
Diassociativity in conjugacy closed loops. Comm. Algebra 32 (2004), 767-786.
MR 2101839 |
Zbl 1077.20076
[10] Kunen K.:
The structure of conjugacy closed loops. Trans. Amer. Math. Soc. 352 (2000), 2889-2911.
MR 1615991 |
Zbl 0962.20048
[11] Nagy P., Strambach K.:
Loops as invariant sections in groups, and their geometry. Canad. J. Math. 46 (1994), 1027-1056.
MR 1295130 |
Zbl 0814.20055
[12] Matievics I.:
Geometries over universal left conjugacy closed quasifields. Geom. Dedicata 65 (1997), 127-133.
MR 1451967 |
Zbl 0881.51005
[13] Soikis L.R.:
O specialnych lupach. in Voprosy teorii kvazigrupp i lup (V.D. Belousov, ed.), Akademia Nauk Moldav. SSR, Kishinev, 1970, pp. 122-131.
MR 0274626