Previous |  Up |  Next

Article

Keywords:
left conjugacy closed loop; multiplication group; nucleus
Summary:
A loop $Q$ is said to be left conjugacy closed (LCC) if the set $\{L_x; x \in Q\}$ is closed under conjugation. Let $Q$ be such a loop, let $\Cal L$ and $\Cal R$ be the left and right multiplication groups of $Q$, respectively, and let $\operatorname{Inn} Q$ be its inner mapping group. Then there exists a homomorphism $\Cal L \to \operatorname{Inn} Q$ determined by $L_x \mapsto R^{-1}_xL_x$, and the orbits of $[\Cal L, \Cal R]$ coincide with the cosets of $A(Q)$, the associator subloop of $Q$. All LCC loops of prime order are abelian groups.
References:
[1] Basarab A.S.: Klass LK-lup. Matematicheskie issledovanija 120 (1991), 3-7. MR 1121425
[2] Basarab A.S.: IK-loops. Quasigroups and related systems 4 (1997), 1-7. MR 1767513 | Zbl 0945.20037
[3] Belousov V.D.: Osnovy teorii kvazigrupp i lup. Nauka, Moskva, 1967. MR 0218483
[4] Bruck R.H.: A Survey of Binary Systems. Springer-Verlag, 1971. MR 0093552 | Zbl 0141.01401
[5] Drápal A.: Conjugacy closed loops and their multiplication groups. J. Algebra 272 (2004), 838-850. MR 2028083 | Zbl 1047.20049
[6] Drápal A.: Structural interactions of conjugacy closed loops. submitted.
[7] Goodaire E.G., Robinson D.A.: A class of loops which are isomorphic to all loop isotopes. Canad. J. Math. 34 (1982), 662-672. MR 0663308 | Zbl 0467.20052
[8] Kiechle H., Nagy G.P.: On the extension of involutorial Bol loops. Abh. Math. Sem. Univ. Hamburg 72 (2002), 235-250. MR 1941556 | Zbl 1016.20051
[9] Kinyon M.K., Kunen K., Phillips J.D.: Diassociativity in conjugacy closed loops. Comm. Algebra 32 (2004), 767-786. MR 2101839 | Zbl 1077.20076
[10] Kunen K.: The structure of conjugacy closed loops. Trans. Amer. Math. Soc. 352 (2000), 2889-2911. MR 1615991 | Zbl 0962.20048
[11] Nagy P., Strambach K.: Loops as invariant sections in groups, and their geometry. Canad. J. Math. 46 (1994), 1027-1056. MR 1295130 | Zbl 0814.20055
[12] Matievics I.: Geometries over universal left conjugacy closed quasifields. Geom. Dedicata 65 (1997), 127-133. MR 1451967 | Zbl 0881.51005
[13] Soikis L.R.: O specialnych lupach. in Voprosy teorii kvazigrupp i lup (V.D. Belousov, ed.), Akademia Nauk Moldav. SSR, Kishinev, 1970, pp. 122-131. MR 0274626
Partner of
EuDML logo