Previous |  Up |  Next

Article

Keywords:
$\alpha$-space; $\alpha T_i$-space; minimal-$\alpha T_i$ space; $T_2$-closed space; minimal-$T_2$ space; $\psi$-space
Summary:
An $\alpha$-space is a topological space in which the topology is generated by the family of all $\alpha$-sets (see [N]). In this paper, minimal-$\alpha\Cal P$-spaces (where $\Cal P$ denotes several separation axioms) are investigated. Some new characterizations of $\alpha$-spaces are also obtained.
References:
[D] Dontchev J.: Survey on pre-open sets. preprint, 1999.
[E] Engelking R.: General Topology. Heldermann, Berlin, 1989. MR 1039321 | Zbl 0684.54001
[L] Larson R.: Minimal $T_0$-spaces and minimal $T_D$-spaces. Pacific J. Math. 31 (1969), 451-458. MR 0251688
[Le] Levine N.: Semi-open sets and semi-continuity in topological spaces. Amer. Math. Monthly 70 (1963), 36-41. MR 0166752 | Zbl 0113.16304
[Lo] Lo Faro G.: Su alcune proprietà degli insieme $\alpha$-aperti. Atti Sem. Mat. Fis. Univ. Modena XXIX (1980), 242-252 (in Italian).
[N] Njåstad O.: On some classes of nearly open sets. Pacific J. Math. 15 3 (1965), 961-970. MR 0195040
[PW] Porter J.R., Woods R.G.: Extensions and Absolutes of Hausdorff Spaces. Springer, New York, 1988. MR 0918341 | Zbl 0652.54016
[T] Tall F.D.: The density topology. Pacific J. Math. 62 (1976), 275-284. MR 0419709 | Zbl 0305.54039
Partner of
EuDML logo