Article
Keywords:
$\alpha$-space; $\alpha T_i$-space; minimal-$\alpha T_i$ space; $T_2$-closed space; minimal-$T_2$ space; $\psi$-space
Summary:
An $\alpha$-space is a topological space in which the topology is generated by the family of all $\alpha$-sets (see [N]). In this paper, minimal-$\alpha\Cal P$-spaces (where $\Cal P$ denotes several separation axioms) are investigated. Some new characterizations of $\alpha$-spaces are also obtained.
References:
[D] Dontchev J.: Survey on pre-open sets. preprint, 1999.
[L] Larson R.:
Minimal $T_0$-spaces and minimal $T_D$-spaces. Pacific J. Math. 31 (1969), 451-458.
MR 0251688
[Le] Levine N.:
Semi-open sets and semi-continuity in topological spaces. Amer. Math. Monthly 70 (1963), 36-41.
MR 0166752 |
Zbl 0113.16304
[Lo] Lo Faro G.: Su alcune proprietà degli insieme $\alpha$-aperti. Atti Sem. Mat. Fis. Univ. Modena XXIX (1980), 242-252 (in Italian).
[N] Njåstad O.:
On some classes of nearly open sets. Pacific J. Math. 15 3 (1965), 961-970.
MR 0195040
[PW] Porter J.R., Woods R.G.:
Extensions and Absolutes of Hausdorff Spaces. Springer, New York, 1988.
MR 0918341 |
Zbl 0652.54016