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On minimal-α-spaces

G. Lo Faro, G. Nordo∗, J.R. Porter

Abstract. An α-space is a topological space in which the topology is generated by the
family of all α-sets (see [N]). In this paper, minimal-αP-spaces (where P denotes several
separation axioms) are investigated. Some new characterizations of α-spaces are also
obtained.
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ψ-space
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1. Introduction

The family of all topologies on a set X is a complete atomic lattice. There
has been a considerable amount of interest in topologies which are minimal or
maximal in this lattice with respect to certain topological properties.
Given a topological property P , we say that a topology on a set X is P-minimal

if every weaker topology on X does not possess property P .
Throughout this paper, the word “space” will mean topological space, the

topology on a space X is denoted by τ(X), intτ and clτ (or intX and clX when
no confusion is possible about the topology on X) will denote respectively the
interior and the closure operators with respect to τ(X) and if σ is a topology on
the underlying set ofX , then σ is called an expansion (respectively a compression)
of τ(X) if τ(X) ⊆ σ (resp. σ ⊆ τ(X)).
A subset R of a space X is called regular open if intτ (clτ (R)) = R. The family

of all regular open sets of X is denoted by RO(X) and forms a base for a topology
τs(X) on X which is a compression of τ(X) and it is called the semiregularization
of X . We say that X is semiregular if τs(X) = τ(X).
The notion of an α-set was introduced in 1965 by Nj̊astad [N]. Given a spaceX ,

we say that A ⊆ X is an α-set if A ⊆ intτ (clτ (intτ (A))). It is easy to prove that
the family ατ(X) of all α-sets of X is a topology on X which will be called the
α-topology induced by τ(X) and it consists of all the subsets A of X such that
there exists some open set U ∈ τ(X) such that U ⊆ A ⊆ intτ (clτ (U))}. The
members of ατ(X) will be called the α-open sets of X while their complemens
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will be called the α-closed sets of X . Evidently, every open set is an α-set and
hence the α-topology is an expansion of τ(X). We say that X is an α-space if
τ(X) = τα(X).
Obviously, the partial ordered set of all α-topologies contain both a maximum

(the discrete topology) and a minimum (the trivial topology) element. If P is a
topological property, we denote by αP the class of α-spaces which satisfy property
P . In this paper, we investigate the minimal-αP property with particular regard
to the properties P = T0, T1, T2 and T2 1

2

.

2. Basic facts on α-spaces

The α-topology ατ(X) of a space (X, τ(X)) has some interesting similarities
with the notion of semiregularization τs(X) (see, for example, [PW]).

Lemma 1 ([N]). For any α-open set A and any α-closed set C of a space X , we
have:

(1) clατ (A) = clτ (A);
(2) intατ (C) = intτ (C);
(3) intατ (clατ (A)) = intτ (clτ (A)).

Proposition 2 ([N]). For any space X , we have α(ατ(X)) = ατ(X).

Proof: Evidently ατ(X) ⊆ α(ατ(X)). Let B ∈ α(ατ(X)). Then, there is some
A ∈ ατ(X) such that A ⊆ B ⊆ intατ (clατ (A)). So, there exists some U ∈ τ(X)
such that U ⊆ A ⊆ intτ (clτ (U)). Hence, intτ (clτ (U)) = intτ (clτ (A)) and, by
Lemma 1(2), we have

U ⊆ A ⊆ B ⊆ intατ (clατ (A)) = intτ (clτ (A)) = intτ (clτ (U)).

This proves that B ∈ ατ(X). �

Definition 1 ([N]). A space X is called an α-space if τ(X) = ατ(X) or, equiv-
alently, if τ(X) = α(σ(X)) for some topology σ(X) on X .

Proposition 3. Let (X, τ(X)) be a space. The following are equivalent:

(1) X is an α-space;
(2) τ(X) = {U ∪ {p} : U ∈ τ(X), p ∈ int(cl(U))};
(3) {U ∪ {p} : U ∈ τ(X) is dense in X and p ∈ X} ⊆ τ(X).

Proof: (1)⇒(2) Evidently, τ(X) ⊆ {U ∪ {p} : U ∈ τ(X), p ∈ intτ (clτ (U))}
(it suffices to take p ∈ U). Conversely, let U ∈ τ(X) and p ∈ intτ (clτ (U)).
Then U ⊆ U ∪ {p} ⊆ U ∪ intτ (clτ (U)) = intτ (clτ (U)). Since X is an α-space,
U ∪ {p} ∈ τ(X).

(2)⇒(3) Obvious because, when clτ (U) = X , every p ∈ intτ (clτ (U)) = X .
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(3)⇒(1) Suppose that {U ∪{p} : U ∈ τ(X) is dense in X and p ∈ X} ⊆ τ(X)
and let A ∈ ατ(X), i.e. A ⊆ intτ (clτ (intτ (A))). The set D = intτ (A) ∪ intτ (X \
intτ (A)) is open and dense because

cl(D) = clτ
(

intτ (A)
)

∪ clτ
(

intτ (X \ intτ (A))
)

= clτ

(

clτ (intτ (A))
)

∪ clτ
(

X \ clτ (intτ (A))
)

= clτ

(

clτ (intτ (A)) ∪
(

X \ clτ (intτ (A))
)

)

= clτ (X)

= X.

So, for any p ∈ A, by hypothesis we have that D ∪ {p} ∈ τ(X).
Now, we consider the open set:

Wp =
(

D ∪ {p}
)

∩ intτ (clτ (intτ (A)))

=
(

intτ (A) ∪ intτ (X \ intτ (A)) ∪ {p}
)

∩ intτ (clτ (intτ (A)))

=
(

intτ (A) ∩ intτ
(

clτ (intτ (A))
)

)

∪
(

intτ
(

X \ intτ (A)
)

∩ intτ
(

clτ (intτ (A))
)

)

∪
(

{p} ∩ intτ
(

clτ (intτ (A))
)

)

= intτ (A) ∪ {p}

as

(

intτ (X \ intτ (A))
)

∩ intτ
(

clτ (intτ (A))
)

=
(

X \ clτ
(

intτ (A)
)

)

∩ intτ
(

clτ (intτ (A))
)

⊆
(

X \ intτ
(

clτ
(

intτ (A)
))

)

∩ intτ
(

clτ (intτ (A))
)

= ∅.

Thus, for every p ∈ A, Wp = intτ (A) ∪ {p} ∈ τ(X) and so, also the union
⋃

p∈AWp = intτ (A)∪A = A is an open set of X . This proves that ατ(X) ⊆ τ(X)

and hence that X is an α-space. �

In [N] it is proved the following:

Proposition 4. A space X is an α-space if and only if all the nowhere dense sets
are closed sets.

The following proposition improves the previous one.
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Proposition 5. A space (X, τ) is an α-space if and only if every nowhere dense
set is discrete.

Proof: Suppose that X is an α-space and that N is a nowhere dense subset
of X . By Proposition 4, N is a closed set and so X \N is an open dense set. For
any p ∈ N , by Proposition 3(3), the set U = (X \N) ∪ {p} is open in X . Since
U ∩N = {p}, it follows that N is discrete.
Conversely, let U be an open dense set of X and p ∈ X . Then X \ U is a

nowhere dense set and by hypothesis, it is discrete. So, if p ∈ X \ U , there exists
some V ∈ τ such that V ∩ (X \ U) = {p}. Hence U ∪ {p} = U ∪ V ∈ τ(X).
Since the case when p ∈ U is trivial, by Proposition 3(3), it is proved that X is
an α-space. �

It is shown in [Lo] that the operator α is not monotonic, i.e. that, in general,
for two topologies τ(X) and σ(X) on a set X , τ(X) ⊆ σ(X) does not imply
ατ(X) ⊆ ασ(X). However, we have the following:

Lemma 6. Let τ(X) and σ(X) be topologies on a set X such that τ(X) ⊆ σ(X)
and τs(X) = σs(X). Then ατ(X) ⊆ ασ(X).

Proof: Let A ∈ ατ(X). Then there exists some U ∈ τ(X) such that U ⊆ A ⊆
intτ (clτ (U)). So, being

intσ(clσ(U)) = intσs
(clσs

(U)) = intτs(clτs(U)) = intτ (clτ (U)),

we have U ⊆ A ⊆ intσ(clσ(U)) with U ∈ τ ⊆ σ, that is A ∈ ασ(X). �

Let us recall that a space (X, τ(X)) is called:

• T2-closed (resp. T2 1
2

-closed) if it is closed in every Hausdorff (resp. T2 1
2

)

space containing X as a subspace,
• minimal-T2 (resp. minimal-T2 1

2

) if it is a T2- (resp. T2 1
2

-) space and there

is no strictly coarser T2 (resp. T2 1
2

) topology on the same set X .

The following properties are well-known and will be used later.

Proposition 7. A Hausdorff space is T2-closed if and only if every open ultrafilter
on X is fixed.

Proposition 8. A space (X, τ(X)) is Hausdorff if and only if its semiregulariza-
tion (X, τs(X)) is Hausdorff.

Corollary 9. A space (X, τ(X)) is T2-closed if and only if its semiregularization
(X, τs(X)) is minimal-T2.

Proposition 10. Every regular closed subspace of a T2-closed space is T2-closed.
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Proposition 11. A Hausdorff space X is minimal-T2 if and only if it is semi-
regular and T2-closed.

Proposition 12. If σ(X) and τ(X) are two topologies on a set X such that
τs(X) ⊆ σ(X) ⊆ τ(X) then τs(X) = σs(X).

Proof: Let R be a regular open set of (X, τ(X)). Then there exists some U ∈
τ(X) such that R = intτ

(

clτ (U)
)

. So, R ∈ τs(X) ⊆ σ(X). Since τs(X) ⊆ σ(X)
and using a well-known property of the closure of the semiregularization (see
[PW]), we have that

clσ(R) ⊆ clτs(R) = clτ (R)

while, being σ(X) ⊆ τ(X), it follows

intσ
(

clσ(R)
)

⊆ intτ
(

clτ (R)
)

= R.

Obviously, being R ∈ σ(X), we also have that R ⊆ intσ
(

clσ(R)
)

and hence that

R = intσ
(

clσ(R)
)

. Since R ∈ σ(X), this means that R is a regular open set of
(X,σ(X)). On the other hand, let S be a regular open set of (X,σ(X)). Then
there exists some V ∈ σ(X) such that S = intσ

(

clσ(V )
)

. Since S ∈ σ(X) ⊆
τ(X), we have that

clτ (S) ⊆ clσ(S)

Hence, being τs(X) ⊆ σ(X) and by some well-known properties of the interior of
the semiregularization it follows that

intτ
(

clτ (S)
)

= intτs
(

clτ (S)
)

⊆ intσ
(

clσ(S)
)

= S.

Obviously, being S ∈ τ(X), we also have that S ⊆ intτ
(

clτ (S)
)

and hence that

S = intτ
(

clτ (S)
)

, that is S is a regular open set of (X, τ(X)). Thus, the topolo-
gies generated by these families of regular open sets, i.e. the semiregularization of
(X, τ(X)) and (X,σ(X)) coincide and we can conclude that τs(X) = σs(X). �

Proposition 13. Let U be a free open ultrafilter on a Hausdorff space X and p
be a fixed point in X . Then, there exists a Hausdorff topology τU on X such that
αU (X) $ ατ(X).

Proof: Let us consider the family τU (X) = {U ∈ τ(X) : p ∈ U ⇒ U ∈ U}.
It is a simple routine to verify that τU (X) forms a topology on X such that
τU (X) ⊆ τ(X).
The space (X, τU (X)) is T2. In fact, for every x 6= y in X , since (X, τ(X)) is

Hausdorff, there are U, V ∈ τ(X) such that x ∈ U , y ∈ V and U ∩ V = ∅. If
p /∈ U ∪ V , U, V ∈ τU (X) and we are done. Otherwise, if, for example, p ∈ U , we
have p /∈ V and V ∈ τ(X). Furthermore, since U is free with respect to (X, τ(X)),
there exist some N ∈ τ(X) and some W ∈ U such that y ∈ N and W ∩N = ∅.
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Thus W ⊆ U ∪W implies U ∪W ∈ U and hence U ∪W ∈ τU (X), while being
p /∈ V ∩N ∈ τ(X) it follows that V ∩N ∈ τU (X). So, U ∪W and V ∩N are two
open neighborhoods of x and y respectively in τU (X) such that

(

U ∪W
)

∩
(

V ∩N
)

=
(

U ∩ (V ∩N)
)

∪
(

W ∩ (V ∩N)
)

⊆ (U ∩ V ) ∪ (W ∩N)

= ∅ ∪ ∅ = ∅

and this proves that the space (X, τU (X)) is Hausdorff.
Since it is immediate to see that every neighborhood of p in τU (X) belongs to

U and (X, τU (X)) is T2, it follows that p is the unique convergence point of U
with respect to τU (X).
In order to show that ατU (X) ⊆ ατ(X), we observe first that, for every U ∈

τU (X), it results:

(1) clτU (U) =

{

clτ (U) if U /∈ U ,

clτ (U) ∪ {p} if U ∈ U .

In fact, τ(X) ⊆ τU (X) implies, in any case, clτU (U) ⊆ clτ (U).
Now, consider the case U /∈ U and suppose, by contradiction that there is some

x ∈ clτU (U) such that x /∈ clτ (U). So, there exists some neighborhood N of x in
τ(X) such that N ∩ U = ∅.
Since U is an open ultrafilter on (X, τ(X)), U /∈ U implies that X \clτ (U) ∈ U .

Now, W =
(

X \ clτ (U)
)

∪N is an open neighborhood of x with respect to τU (X)
(because W ∈ τ(X), x ∈ N ⊆ W , and X \ clτ (U) ⊆ W implies W ∈ U) but it
results

W ∩ U =
(

(

X \ clτ (U)
)

∪N
)

∩ U =
(

(

X \ clτ (U)
)

∩ U
)

∪
(

N ∩ U
)

= ∅ ∪ ∅ = ∅

which is a contradiction to x ∈ clτU (U).
Let us consider the case U ∈ U . Evidently p ∈ clτU (U) as for every open

neighborhoodN of p in τU (X), it follows that N ∈ U and hence N∩U ∈ U implies
N ∩V 6= ∅. Conversely, suppose, by contradiction, that there is some x ∈ clτU (U)
such that x 6= p and x /∈ clτ (U). Then, there exists some open neighborhood N
of p in τ(X) such that N ∩U = ∅ and, it must be N /∈ τU (X), that is p ∈ N /∈ U .
Since (X, τ(X)) is T2 and x 6= p, there is some open neighborhood G of x ∈ τ(X)
such that p /∈ G. Thus, p /∈ N ∩ G ∈ τ(X) implies that N ∩ G ∈ τU (X). So,
N ∩G is an open neighborhood of x in τU (X) such that

(

N ∩G)∩U ⊆ N ∩U = ∅.
A contradiction to x ∈ clτU (U). Applying the usual duality rules to formula (1),
we also obtain that, for every U ∈ τU (X), it results:

(2) intτU
(

clτcU (U)
)

=

{

intτ
(

clτ (U)
)

\ {p} if U /∈ U ,

intτ
(

clτ (U)
)

if U ∈ U .
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In fact, if U /∈ U , as U is an open ultrafilter on (X, τ(X)), X \ clτ (U) ∈ U and so
we have that:

intτU
(

clτcU (U)
)

= intτU
(

clτ (U)
)

= X \ clτU

(

X \
(

clτ (U)
)

)

= X \ clτ
(

X \
(

clτ (U) ∪ {p}
)

)

=
(

X \ clτ
(

X \ clτ (U)
)

)

∩
(

X \ {p}
)

= intτ
(

clτ (U)
)

\ {p}.

If U ∈ U , since U is an open ultrafilter on (X, τ(X)), it necessarily results X \
clτ (U) /∈ U and we have:

intτU
(

clτU (U)
)

= X \ clτU
(

X \ clτU (U)
)

= X \ clτ
(

X \ clτU (U)
)

= intτ
(

clτU (U)
)

= intτ
(

clτ (U) ∪ {p}
)

= intτ
(

clτ (U)
)

,

where the last equality is due to the fact that p ∈ clτ (U) (because for every
neighborhood N of p in τ(X), we have N ∈ U and so, being U ∈ U , it follows
that N ∩ U ∈ U and N ∩ U 6= ∅).
Now, for every A ∈ ατU (X), there exists some U ∈ τU (X) such that U ⊆ A ⊆

intτU
(

clτU (U)
)

and by formula (2), it immediately follows, in both cases, that

U ⊆ A ⊆ intτ
(

clτ (U)
)

with U ∈ ατ(X) ⊆ τ(X) and so that A ∈ ατ(X). Thus
ατU (X) ⊆ ατ(X). To finish the proof, we will show that ατU (X) 6= ατ(X). Since
U is free, p is not an adherent point for U and so there exist some neighborhood
V of p in τ(X) and some U ∈ U such that U ∩ V = ∅. Thus V /∈ U and,
being p ∈ V , by definition of τU (X), it follows that V /∈ τU (X). Evidently
V ∈ ατ(X) (as V ∈ τ(X)) but V /∈ ατU (X). Suppose, by contradiction, that
there exists some W ∈ τU (X) such that W ⊆ V ⊆ intτU

(

clτU (W )
)

. Since
V /∈ U , it follows a fortiori that W /∈ U and so, by formula (2), we have that
W ⊆ V ⊆ intτ

(

clτ (W )
)

\ {p} and thus that p /∈ V . A contradiction. This proves

that ατU (X) $ ατ(X) and concludes our proof. �

3. Minimal-αT0-spaces

Definition 2. Let P be a topological property. A space X is said to be an
αP-space if it is an α-space and property P holds.
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Definition 3. Let P be a topological property. A space X is called minimal-αP
if it is an αP-space and there is no strictly coarser αP-topology on the same set.

Since the unique T1-minimal-space is the cofinite topology which is an α-space
(by Proposition 3), it is evident that the class of minimal-αT1-spaces coincides
with the well-known class of minimal-T1.
One would suspect that if X is minimal-T0, then (X,ατ(X)) is minimal-αT0.
Here is a counterexample.

Example 14. Consider R with τ(R) = {(−∞, a) : a ∈ R} ∪ {∅,R}. Then R is
minimal-T0. If ∅ 6= U ∈ τ(R), clR(U) = R, then intR

(

clR(U)
)

= R. So, if a < b
and c = a−1, then (−∞, c)∪{a}, (−∞, c)∪{b} ∈ ατ(R). In particular, it follows
that (R, ατ(R)) is T1. If σ is the cofinite topology on R, then σ ⊂ τ(R).

Lemma 15. Let X be a set, p ∈ X , and τ(X) = {U : p ∈ U and X \ U is
finite} ∪ {∅}. Then X is minimal-αT0.

Proof: Clearly, X is T0. If ∅ 6= U ∈ τ(X), then p ∈ U , clX U = X , and
intX clX U = X . Now U ∪ {q} is open for all q ∈ X , by Proposition 3, since
X is αT0. Let σ ⊆ τ(X) and (X,σ) be αT0. If ∅ 6= U ∈ τ(X), then p ∈ U ,
and X \ U = {q1, · · · , qn} is finite. Since ∅ 6= V ∈ σ ⊆ τ(X) implies p ∈ V ,
then for each 1 ≤ i ≤ n, there is a Vi ∈ σ such that p ∈ Vi ⊆ X \ {qi}. For
T =

⋂

{Vi : 1 ≤ i ≤ n}, p ∈ T ∈ σ and T ⊆ U . As (X,σ) is αT0 and clσ T = X ,
then U =

⋃

{T ∪ {q} : q ∈ U \ T } ∈ σ. �

In the topology just considered, every point different from p is closed. Now,
let us consider the case in which some point of X is not closed.

Lemma 16. Let X be an αT0-space, and p ∈ X such that clX{p} 6= {p}. Then
clX ({p}) is a regular-closed set and p ∈ intX

(

clX ({p})
)

.

Proof: Let U = X \ clX({p}). It suffices to show that U is regular-open. If
p ∈ clX (U), then clX(U) = X and intX

(

clX(U)
)

= X . So, for q ∈ clX({p})\{p},
U ∪ {q} is open and (U ∪ {q}) ∩ {p} = ∅. That is, q /∈ clX ({p}), a contradiction.
So, p /∈ clX (U). For V = X \ clX (U), we have that p ∈ V ⊆ clX({p}). Thus,
clX (V ) = clX({p}). �

In order to obtain a characterization of minimal-T0-spaces, we need some other
lemmas.

Lemma 17. Let X be an αT0-space, and p, q ∈ X such that clX({p}) 6= {p},
clX ({q}) 6= {q}, and p 6= q. Then p /∈ clX({q}) and q /∈ clX ({p}).

Proof: Since X is T0, then clX ({p}) 6= clX({q}). Assume that q ∈ clX({p}).
Then p /∈ clX({q}) as clX({p}) 6= clX ({q}). So, clX ({q}) ⊆ clX({p}). By
Lemma 16, q ∈ intX

(

clX ({q})
)

⊆ intX
(

clX ({p})
)

⊆ clX({p}). As p /∈ clX ({q}),

it follows that p /∈ intX
(

clX ({q})
)

. Therefore, q /∈ clX({p}), a contradiction.
�
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Lemma 18. Let X be a minimal-αT0-space, and p, q ∈ X such that

clX ({p}) 6= {p}, clX ({q}) 6= {q}, and p 6= q. Then intX
(

clX ({p})
)

= {p}

and intX
(

clX({q})
)

= {q}.

Proof: Let τ = τ(X) be the topology on X , r ∈ intX
(

clX({p})
)

\ {p} and
consider the topology σ = {U ∈ τ : r ∈ U implies q ∈ U} on X . Clearly,
σ ⊆ τ . There are a number of cases to verify that (X,σ) is T0 but each case
is straightforward. Next we show that (X,σ) is an α-space. Let U be open
and dense in (X,σ) and t ∈ X \ U . We want to show that U ∪ {t} ∈ σ. If
r ∈ U , then U is dense and open in (X, τ) and hence, U ∪ {t} ∈ σ. Suppose
that r /∈ U . Our first goal is to show that U is dense in τ . If clτ (U) 6= clσ(U),
then r ∈ clσ(U) \ clτ (U). Then p /∈ U and clτ ({p}) ∩ U = ∅. In particular,
intτ

(

clτ ({p})
)

∩ U = ∅. There is an V ∈ τ such that p ∈ V and r /∈ V . Now

p ∈ intτ
(

clτ ({p})
)

∩V ∈ σ and intτ
(

clτ ({p})
)

∩V ∩U = ∅. So, U is not dense in
(X,σ), a contradiction. Thus, U is dense in τ . Also the above proof shows that
p ∈ U . If q /∈ U , then clτ ({q}) ∩ U = ∅. In particular, intτ

(

clτ ({q})
)

∩ U = ∅.

But q ∈ intτ
(

clτ ({q})
)

∈ σ, a contradiction. Thus, q ∈ U . With both p, q ∈ U ,
we have that U ∪ {r} ∈ σ. For t 6= r, then U ∪ {t} ∈ σ as U ∪ {t} ∈ τ and
r /∈ U ∪ {t}. �

Proposition 19. Let X be a minimal-αT0-space, and P =
{

p ∈ X : clX({p}) 6=

{p}
}

such that |P | ≥ 2. Then P is dense in X and if V ∈ τ(X) and V \ P 6= ∅,
then P ⊆ V .

Proof: Let τ = τ(X) be the topology of the space X . First we show that
Q = {q ∈ X : {q} ∈ τ} is dense. Clearly, Q ⊇ P . Fix r ∈ X \ clX (Q). Note
that the topology σ = {U ∈ τ : r ∈ U implies Q ⊆ U} ⊆ τ . If we show that
(X,σ) is αT0, it will follow that Q is dense. Since {q} ∈ σ for all q ∈ Q, q
can be T0-separated from all p ∈ X \ {q} in σ. As (X \ clX(Q)) ∪ Q ∈ σ and
(X \ clX(Q)) ∪ Q ∪ {t} ∈ σ for t ∈ clX (Q) \ Q, a point t ∈ clX (Q) \ Q can be
T0-separated from all p ∈ X \ {t} in σ. Let s, t ∈ X \ clX(Q). As τ is T0, there
is some V ∈ τ such that s ∈ V and t /∈ V or vice versa. Now, s ∈ V ∪Q ∈ σ and
t /∈ V ∪Q. This completes the proof that (X,σ) is T0. Next we show that (X,σ)
is an α-space. Let U be an open and dense subset of (X,σ). Note that Q ⊆ U .
If clτ (U) 6= clσ(U), then r ∈ clσ(U) \ clτ (U). There is an V ∈ τ such that r ∈ V
and V ∩Q = ∅. As r /∈ P , clτ ({r}) = {r}, ∅ 6= V \{r} ∈ σ and V \ {r} ∩ U = ∅,
a contradiction as U is dense in (X,σ). This shows that clτ (U) = X . As τ is an α
topology, for t ∈ X,U ∪{t} ∈ τ . As Q ⊆ U , U ∪{t} ∈ σ. This completes the proof
that (X,σ) is an αT0-space. Finally, we show that Q = P . Assume that q ∈ Q\P .
The topology σ = {U ∈ τ : q ∈ U implies P ⊆ U} ⊆ τ . Similar to the above, it is
straightforward to show that (X,σ) is T0 and an α-space, a contradiction as τ is
minimal-αT0. Thus, P = Q. �
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Proposition 20. Let X be a minimal-αT0-space, and P = {p ∈ X : clX({p}) 6=
{p}} such that |P | ≥ 2. Then τ(X) is generated by the base {P ∪ {q} : q ∈
X \ P} ∪ {{p} : p ∈ P}.

Proof: This is an obvious consequence of Proposition 19. �

Proposition 21. Let X be a set and P  X such that |P | ≥ 2. Let τ(X) be
generated by the base {P ∪ {q} : q ∈ X \ P} ∪ {{p} : p ∈ P}. Then X is a
minimal-αT0-space.

Proof: Let τ = τ(X) be the topology on X and σ ⊆ τ be an αT0 topology. For
p ∈ P, (X \ P ) ∪ {p} = clτ ({p}) ⊆ clσ({p}). Thus, for all p ∈ P , clσ({p}) 6= {p}.
By Lemma 17, for q ∈ P \ {p}, q /∈ clσ({p}). Hence clσ({p}) = (X \ P ) ∪ {p} =
clτ ({p}). Thus, P \ {p} ∈ σ for all p ∈ P . By Lemma 16, p ∈ intσ

(

clσ({p})
)

. As

|P | ≥ 2, let q ∈ P \ {p}. Then intσ
(

clσ{q}
)

∩ P \ {p} = {q} ∈ σ and P ∈ σ. As

X = clτ (P ) ⊆ clσ(P ), X = intσ
(

clσ(P )
)

. Since (X,σ) is an αT0-space, it follows
that for q ∈ X \ P , P ∪ {q} ∈ σ. This shows that σ = τ . �

Finally, we obtain the characterization of αT0-spaces.

Theorem 22. Let X be an αT0-space and P = {p ∈ X : clX({p}) 6= {p}}. Then
X is minimal-αT0 iff P 6= ∅ and

(i) if P = {p}, then τ(X) = {U : p ∈ U and X \ U is finite} ∪ {∅}, or
(ii) if |P | ≥ 2, then τ(X) is generated by the base {P∪{q} : q ∈ X\P}∪{{p} :

p ∈ P}.

Proof: (⇐=) It follows from Lemma 18 and Proposition 20.
(=⇒) It follows from Lemma 15 and Proposition 21. �

4. Minimal-αT2-spaces

Proposition 23. Let X be an αT2-space. Then X is a minimal-αT2-space if and
only if (X, τs(X)) is minimal-T2 and τ(X) = ατs(X).

Proof: (=⇒) Suppose that X is a minimal-αT2-space. Thus ατ(X) = τ(X).
Then the space (X, τ(X)) is T2-closed. In fact, if, by contradiction, it is not,
by Proposition 7, there exists some free open ultrafilter U on (X, τ(X)) and by
Proposition 13, there exists a strictly coarser αT2 topology τU . A contradiction
to the α-minimality of (X, τ(X)). Hence, by Corollary 9, (X, τs(X)) is minimal-
T2. Furthermore, being τs(X) ⊆ τ(X) and, obviously,

(

τs(X)
)

s
= τs(X), by

Lemma 6, we have that ατs(X) ⊆ ατ(X), i.e. ατs(X) ⊆ τ(X) where ατs(X) is
Hausdorff by Proposition 11 as τ(X) is Hausdorff and the T2 axioms are expansive.
Since (X, τ(X)) is minimal-αT2, we conclude that ατs(X) = τ(X).
(⇐=) Let us suppose that (X, τs(X)) is minimal-T2 and τ(X) = ατs(X).

Then (X, τ(X)) is H-closed by Corollary 9. Now, let σ(X) be an αT2 topology
on X such that

σ(X) ⊆ τ(X).
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For every R regular open set of (X, τ(X)), X \R is a regular closed set and hence,
by Proposition 10, it is a T2-closed subspace of the Hausdorff space (X,σ(X)).
Thus X \R is a closed set of (X,σ(X)) and R ∈ σ(X). This proves that

τs(X) ⊆ σ(X).

Hence, by Proposition 12, τs(X) = σs(X) and so, applying Lemma 6 to τs(X) ⊆
σ(X), we have that ατs(X) ⊆ ασ(X). Since σ(X) is an α topology and, by
hypothesis ατs(X) = τ(X), it follows that τ(X) ⊆ σ(X) and so that τ(X) =
σ(X). This shows that (X, τ(X)) is a minimal-αT2-space and concludes our
proof. �

Corollary 24. Let (X, τ(X)) be a space with a dense set D of isolated points.
Then:

(1) the α-topology ατ(X) coincides with the topology generated by τ(X) ∪
{D ∪ {x} : x ∈ X}, i.e. it is a simple extension of the subspace D;

(2) X is an α-space if and only if X \D is discrete;
(3) if X is a semiregular α-space, it results:

{

σ : σ is a topology on X such that σs = τ(X)
}

= {τ(X)}.

Proof: Straightforward applications of Propositions 3, 5 and 6. �

Example 25. Let us consider the set X = R× [0,+∞[ . It is easy to verify that

τs(X) =
{

U ⊆ X : (x, 0) ∈ U ⇒ ∃ ǫ > 0 such that ]x− ǫ, x+ ǫ[×[0, ǫ[⊆ U
}

defines a Tychonoff topology on X and that D = R×]0,+∞[ is a dense set of
isolated points. Now, if we consider another topology on X ,

τ(X) =
{

U ⊆ X : (x, 0) ∈ U \Q× {0} ⇒ ∃ǫ > 0

such that ]x− ǫ, x+ ǫ[×[0, ǫ[⊆ U

and (x, 0) ∈ U ∩Q× {0} ⇒ ∃ǫ > 0 such that

]x− ǫ, x+ ǫ[×]0, ǫ[∪
(

]x− ǫ, x+ ǫ[∩Q× {0}
)

⊆ U
}

,

it is a simple routine to check that τs(X) is the semiregularization of τ(X) and
that τ(X) 6= τs(X). Furthermore, since C = X \ (R×]0,+∞[) is a closed nowhere
dense subset with respect to both τ(X) and τs(X), by Corollary 24 follows that
ατ(X) = ατs(X) coincides with the topology generated by τ(X)∪

{

(R×]0,+∞[)∪
{(x, 0)} : x ∈ R}

}

and so that τ(X) 6= ατ(X). Thus, we have that

τs(X) $ τ(X) $ ατ(X) = ατs(X).
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Example 26 (A Tychonoff α-space which is not minimal-T2). Let us recall that
two sets are almost disjoint if their intersection is a finite set. It is a simple
routine to show (by using Zorn’s Lemma) that there exists a maximal almost
disjoint familyM of subsets of N. The space generated on the set ψ = N∪M by
the base

B =
{

{n} : n ∈ N
}

∪
{

{M} ∪ S : M ∈ M and S is a cofinite subset of M
}

is a 0-dimensional (and hence Tychonoff) but not normal (and hence not minimal-
T2). This space is known in literature as the ψ-space (see 1N, [PW]). Since, every
closed nowhere dense set of ψ is discrete, by Proposition 5, it is evident that ψ is
an α-space.

Example 27 (A minimal-T2, α-space). Let us consider the set

Z =

{(

1

n
, 0

)

: n ∈ N
}

∪

{(

1

n
,
1

m

)

: n ∈ N, m ∈ Z
}

with the topology τ(Z) induced by the usual topology on R2. Let X = Z ∪{a, b}
and define a topology τ(X) on X by saying that a subset U ⊂ Z is open if
U ∩ Z ∈ τ(Z) and if a ∈ U (respectively, b ∈ U) there exists some k ∈ N such
that

{(

1
n ,
1
m

)

: n ∈ N, m ≥ k
}

⊆ U (respectively,
{(

1
n ,−

1
m

)

: n ∈ N, m ≥ k
}

⊆
U). It is well-known (see 4.8(d), [PW]) that the space X is Urysohn, not com-
pact and minimal-T2. Furthermore, since every its nowhere dense subset (namely,
{(

1
n , 0

)

: n ∈ N
}

∪ {a, b}) is discrete, it follows from Proposition 5 that X is an
α-space.

Let us note that, by 24(3), in both of the above spaces, we have that
{

σ : σ is

a topology on X such that σs = τ(X)
}

= {τ(X)}. Thus, the question remains:

is there some semiregular α-space
(

X, τ(X)
)

such that {τ(X)} $
{

σ : σ is a

topology on X such that σs = τ(X)
}

?

We now provide an example of a Tychonoff α-space X such that

{τ(X)} ( {σ : σ is a topology on X such that σs = τ(X)}.

Example 28. Recall that a measurable subset A of R has density 1 if

A = {x ∈ R : lim
h→0

m(A ∩ [x− h, x+ h])

2h
= 1}.

The set of {A ⊆ R : A measurable with density 1} forms a topology δ(R), called
the density topology, on the set R. The space

(

R, δ(R)
)

is a Tychonoff space
without isolated points, strictly finer than the usual topology τ(R), and has the
property that every nowhere dense subset is closed and discrete (see 2.7 in [T]). In
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particular,
(

R, δ(R)
)

is an α-space by Proposition 4. We need one additional fact

about
(

R, δ(R)
)

. Note that for x ∈ U ∈ δ(R), U∩(x,∞) 6= ∅ and U∩(−∞, x) 6= ∅.
In particular, the δ(R) open neighborhood filter is contained in two distinct δ(R)
open ultrafilters on R. Before continuing with this example, we need a result
about absolutes of spaces.

For a Hausdorff space X and let EX = {U : U is a convergent, open ultrafilter
on X}. For U ∈ τ(X), let O(U) = {U ∈ EX : U ∈ U}. For U, V ∈ τ(X), it is easy
to verify (see [PW]) that O(∅) = ∅, O(X) = EX,O(U ∩V ) = O(U)∩O(V ), O(U ∪
V ) = O(U) ∪ O(V ), EX\O(U) = O(X\ clX(U)), and O(U) = O(intX clX (U)).
EX with the topology generated by {O(U) : U ∈ τ(X)} is an extremally dis-
connected Tychonoff space, called the absolute of X . The function k : EX → X
defined by k(U) is the unique convergent point of U is called a covering function
and has the properties that k is irreducible, θ-continuous, perfect and onto. If X
is regular, then k is also continuous. If D ⊆ EX such that k[D] = X , then D is
dense in EX .

Proposition 29. Let X be a regular α-space and Y a subspace of EX such that
for each x ∈ X , |k←((x))| = 2. Then Y is an α-space.

Proof: Let k = k|Y . The function k = k|Y : Y → X is continuous and
onto. So, Y is dense in EX and extremally disconnected. Let N be a nowhere
dense subset of Y . Suppose U = intEX

(

clEX(N)
)

6= ∅. Then, as Y is dense,
∅ 6= U ∩Y ⊆ clEX(N)∩Y = clY (N), contradicting that N is nowhere dense in Y .
Thus, N is nowhere dense in EX . By 6.5d(2) in [PW], k[N ] = k[N ] is nowhere
dense in X and hence discrete in X . Let p ∈ N . There is an open set V in X
such that V ∩ k[N ] = {k(p)}. So, N ∩ k

←
[V ] = k

←
({p}). But k

←
({p}) has only

two points and there is an open set W in Y such that N ∩ k
←
[V ] ∩W = {p}.

This shows that N is discrete in Y and Y is an α-space. �

We are ready to apply Proposition 29 to the regular α-space
(

R, δ(R)
)

. First note
that the covering function k : ER→ (R, δ(R)) has the property that |k←(r)| ≥ 2
for each r ∈ R since each open neighborhood filter is contained in two distinct
δ(R) open ultrafilters on R. Let Y ⊆ ER have the property that |k←(r) ∩ Y | = 2
for each r ∈ R, and let Z ⊂ Y be such that |k←(r)∩Z| = 1 for each r ∈ R. Now,
both Y and Z are dense in ER. By Proposition 29, Y is a Tychonoff α-space.
Let σ be the topology on Y generated by τ(Y ) ∪ {Z}. Clearly, τ(Y ) ( σ, and it
is straightforward to show that σs = τ(Y ). The space Y is the desired space.

5. A problem

Since the property to be T2 1
2

-closed does not pass to the regular open sub-

spaces, we cannot use a result like Proposition 10 to prove a proposition similar
to Proposition 23. So, we leave the following as an unsolved problem:
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Conjecture. Let X be an αT2 1
2

-space. Then X is a minimal-αT2 1
2

-space if and

only if (X, τs(X)) is semiregular, T2 1
2

-closed and τ(X) = ατs(X).
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