[1] Benyamini Y., Lindenstrauss J.:
Geometric Nonlinear Functional Analysis. Amer. Math. Soc. Providence, RI (2000).
MR 1727673 |
Zbl 0946.46002
[2] De Blasi F.S., Georgiev P.G., Myjak J.:
On porous sets and best approximation theory. preprint.
Zbl 1088.41015
[3] De Blasi F.S., Myjak J.:
On the minimum distance theorem to a closed convex set in a Banach space. Bull. Acad. Polon. Sci. 29 373-376 (1981).
MR 0640331 |
Zbl 0515.41031
[4] De Blasi F.S., Myjak J.:
On almost well posed problems in the theory of best approximation. Bull. Math. Soc. Sci. Math. R.S. Roum. 28 109-117 (1984).
MR 0771542 |
Zbl 0593.41026
[5] De Blasi F.S., Myjak J., Papini P.L.:
Porous sets in best approximation theory. J. London Math. Soc. 44 135-142 (1991).
MR 1122975 |
Zbl 0786.41027
[6] Furi M., Vignoli A.: About well-posed minimization problems for functionals in metric spaces. J. Optim. Theory Appl. 5 225-229 (1970).
[7] Matoušková E.:
How small are the sets where the metric projection fails to be continuous. Acta Univ. Carolin. Math. Phys. 33 99-108 (1992).
MR 1287230
[8] Reich S., Zaslavski A.J.:
Asymptotic behavior of dynamical systems with a convex Lyapunov function. J. Nonlinear Convex Anal. 1 107-113 (2000).
MR 1751731 |
Zbl 0984.37016
[9] Reich S., Zaslavski A.J.:
Well-posedness and porosity in best approximation problems. Topol. Methods Nonlinear Anal. 18 395-408 (2001).
MR 1911709 |
Zbl 1005.41011
[10] Reich S., Zaslavski A.J.:
A porosity result in best approximation theory. J. Nonlinear Convex Anal. 4 165-173 (2003).
MR 1986978 |
Zbl 1024.41017
[11] L. Zajíček:
On the Fréchet differentiability of distance functions. Suppl. Rend. Circ. Mat. Palermo (2) 5 161-165 (1984).
MR 0781948
[12] Zajíček L.:
Porosity and $\sigma$-porosity. Real Anal. Exchange 13 314-350 (1987).
MR 0943561
[13] Zajíček L.:
Small non-$\sigma$-porous sets in topologically complete metric spaces. Colloq. Math. 77 293-304 (1998).
MR 1628994
[14] Zaslavski A.J.:
Well-posedness and porosity in optimal control without convexity assumptions. Calc. Var. 13 265-293 (2001).
MR 1864999 |
Zbl 1032.49035