Previous |  Up |  Next

Article

Keywords:
Arens regular; hypergroup algebra; weakly almost periodic; convolution operators
Summary:
Let $X$ be a hypergroup. In this paper, we define a locally convex topology $\beta $ on $L(X)$ such that $(L(X),\beta )^*$ with the strong topology can be identified with a Banach subspace of $L(X)^*$. We prove that if $X$ has a Haar measure, then the dual to this subspace is $L_C(X)^{**}= \operatorname{cl}\{F\in L(X)^{**}; F$ has compact carrier\}. Moreover, we study the operators on $L(X)^*$ and $L_0^\infty(X)$ which commute with translations and convolutions. We prove, among other things, that if $\operatorname{wap}(L(X))$ is left stationary, then there is a weakly compact operator $T$ on $L(X)^*$ which commutes with convolutions if and only if $L(X)^{**}$ has a topologically left invariant functional. For the most part, $X$ is a hypergroup not necessarily with an involution and Haar measure except when explicitly stated.
References:
[1] Bloom W.R., Heyer H.: Harmonic Analysis of Probability Measures on Hypergroups. de Gruyter, Berlin, 1995. MR 1312826 | Zbl 0828.43005
[2] Bloom W.R., Walter M.E.: Isomorphism of hypergroups. J. Austral. Math. Soc. 52 (1992), 383-400. MR 1151294
[3] Duncan J., Hosseiniun S.A.R.: The second dual of Banach algebra. Proc. Royal Soc. Edinburgh 84 (1979), 309-325. MR 0559675
[4] Dunkl C.F.: The measure algebra of a locally compact hypergroup. Trans. Amer. Math. Soc. 179 (1973), 331-348. MR 0320635 | Zbl 0241.43003
[5] Ghahramani F., Medghalchi A.R.: Compact multipliers on hypergroup algebras. Math. Proc. Cambridge Philos. Soc. 98 (1985), 493-500. MR 0803608
[6] Ghahramani F., Medghalchi A.R.: Compact multiplier on hypergroup algebras II. Math. Proc. Cambridge Philos. Soc. 100 (1986), 145-149. MR 0838661
[7] Granirer E.E.: Criteria for compactness and for discreteness of locally compact amenable groups. Proc. Amer. Math. Soc. 40 (1973), 615-624. MR 0340962 | Zbl 0274.22009
[8] Jewett R.I.: Spaces with an abstract convolution of measures. Adv. Math. 18 (1975), 1-101. MR 0394034 | Zbl 0325.42017
[9] Larsen R.: An Introduction to the Theory of Multipliers. Springer Verlag, Berlin, Heidelberg, New York, 1960. MR 0435738 | Zbl 0213.13301
[10] Lasser R.: Almost periodic functions on hypergroups. Math. Ann. 252 (1980), 183-196. MR 0593632 | Zbl 0431.43007
[11] Lau A.T.: Analysis on a class of Banach algebras with applications to harmonic analysis on locally compact groups. Fund. Math. 118 (1983), 161-175. MR 0736276 | Zbl 0545.46051
[12] Lau A.T., Pym J.S.: Concerning the second dual of the group algebra of a locally compact group. J. London Math. Soc. 41 (1990), 445-460. MR 1072051 | Zbl 0667.43004
[13] Lau A.T., Ulger A.: Topological centers of certain dual algebras. Trans. Amer. Math. Soc. 348 (1996), 1191-1212. MR 1322952
[14] Medghalchi A.R.: The second dual of a hypergroup. Math. Z. 210 (1992), 615-624. MR 1175726
[15] Medghalchi A.R., Modarres S.M.S.: Amenability of the second dual of hypergroup algebras. Acta. Math. Hungar. 86 (2000), 335-342. MR 1756256 | Zbl 0970.46030
[16] Rudin W.: Functional Analysis. McGraw Hill, New York, 1991. MR 1157815 | Zbl 0867.46001
[17] Skantharajah M.: Amenable hypergroups. Ph.D. Thesis, The University of Alberta, 1989. Zbl 0755.43003
[18] Skantharajah M.: Amenable hypergroups. Illinois J. Math. 36 (1992), 15-46. MR 1133768 | Zbl 0755.43003
[19] Spector R.: Apercu de la theorie des hypergroups in analyse harmonique sur les groups de Lie. Lecture Notes in Math. 497, Springer Verlag, New York, 1975. MR 0447974
[20] Wolfenstetter S.: Weakly almost periodic functions on hypergroups. Monatsh. Math. 96 (1983), 67-79. MR 0721597 | Zbl 0532.43005
Partner of
EuDML logo