Previous |  Up |  Next

Article

Keywords:
universal locally finite group; inert subgroup
Summary:
Let $G$ be an uncountable universal locally finite group. We study subgroups $H<G$ such that for every $g\in G$, $|H:H\cap H^g|<|H|$.
References:
[1] Belyaev V.: Locally finite groups with a finite non-separated subgroups. Siberian Math. J. 34 (1993), 2 23-39. MR 1223752
[2] Hall Ph.: Some constructions for locally finite groups. J. London Math. Soc. 34 (1959), 305-319. MR 0162845 | Zbl 0088.02301
[3] Hickin K.: Universal locally finite central extensions of groups. Proc. London Math. Soc. 52 (1986), 53-72. MR 0812445 | Zbl 0582.20022
[4] Kegel O., Wehrfritz B.: Locally Finite Groups. North-Holland, Amsterdam, 1973. MR 0470081 | Zbl 0259.20001
[5] Keisler H.J.: Model Theory for Infinitary Logic. North-Holland, Amsterdam, 1971. Zbl 0222.02064
[6] Macintyre A., Shelah S.: Uncountable universal locally finite groups. J. Algebra 43 (1976), 168-175. MR 0439625 | Zbl 0363.20032
[7] Mekler A.: On residual properties. Proc. Amer. Math. Soc. 78 (1980), 187-188. MR 0550490 | Zbl 0448.03021
[8] Morley M.: Homogeneous sets. in: Handbook of Mathematical Logic, edited by J. Barwise, North-Holland, Amsterdam, 1977, pp.181-196. MR 0457132
Partner of
EuDML logo