Article
Keywords:
universal locally finite group; inert subgroup
Summary:
Let $G$ be an uncountable universal locally finite group. We study subgroups $H<G$ such that for every $g\in G$, $|H:H\cap H^g|<|H|$.
References:
[1] Belyaev V.:
Locally finite groups with a finite non-separated subgroups. Siberian Math. J. 34 (1993), 2 23-39.
MR 1223752
[2] Hall Ph.:
Some constructions for locally finite groups. J. London Math. Soc. 34 (1959), 305-319.
MR 0162845 |
Zbl 0088.02301
[3] Hickin K.:
Universal locally finite central extensions of groups. Proc. London Math. Soc. 52 (1986), 53-72.
MR 0812445 |
Zbl 0582.20022
[5] Keisler H.J.:
Model Theory for Infinitary Logic. North-Holland, Amsterdam, 1971.
Zbl 0222.02064
[6] Macintyre A., Shelah S.:
Uncountable universal locally finite groups. J. Algebra 43 (1976), 168-175.
MR 0439625 |
Zbl 0363.20032
[8] Morley M.:
Homogeneous sets. in: Handbook of Mathematical Logic, edited by J. Barwise, North-Holland, Amsterdam, 1977, pp.181-196.
MR 0457132