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Inert subgroups of uncountable locally finite groups

Barbara Majcher-Iwanow

Abstract. Let G be an uncountable universal locally finite group. We study subgroups
H < G such that for every g ∈ G, |H : H ∩ Hg| < |H|.
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0. Introduction

A locally finite group G is universal locally finite if every finite group is embed-
ded into G and any isomorphism between finite subgroups of G can be realized
by an inner automorphism of G. There is a unique countable universal locally
finite group and there are 2κ universal locally finite groups of cardinality κ > ω
[2] and [6].

We say that an infinite subgroup H ≤ G is inert in G if for every conjugate Hg

the group H ∩Hg is of index < |H | in H (and then also in Hg). The main result
of the paper is devoted to existence of inert subgroups in uncountable universal
locally finite groups. The problem of description of inert subgroups in locally
finite groups is connected with the question of V. Belyaev whether an uncountable
locally finite group G can be nontrivially topologized [1]. In Section 1 we show
that G can be nontrivially topologized if it has an infinite inert subgroup H which
is residually finite.
The main result of the paper is Theorem 7 (Section 2) which gives two con-

structions of uncountable universal locally finite groups with inert residually finite
subgroups. This shows that there are several universal locally finite groups of
cardinality ω1 with inert residually finite subgroups. In [6] Macintyre and She-
lah show by a model-theoretic method that there are 2ω1 universal locally finite
groups of cardinality ω1. In Section 3 we study to what extent this method can be
applied to prove that there are 2ω1 universal locally finite groups of cardinality ω1
with inert residually finite subgroups.
We use standard notation. By F2 we denote the two element field. A group

G is residually finite, if for any g ∈ G \ {1} there is a normal subgroup H < G
of finite index with g /∈ H . In our arguments we use several facts about universal
locally finite groups from [2], [6] and [4]. For example we will frequently apply
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the fact that the union of an increasing chain of universal locally finite groups is
a universal locally finite group [4].
The author is grateful to the referee for helpful remarks and suggestions. In

particular, the proof of Theorem 7(1) belongs to the referee. It substantially
simplifies the argument of the author from earlier versions of the paper.

1. Groups which can be topologized

We now explain the connection with topological groups mentioned above.

Definition. Let κ be an infinite cardinal. We say that a subgroup H of a group
G is κ-inert if κ ≤ |H | and for every g ∈ G, |Hg : H ∩ Hg| (and then also
|H : H ∩Hg|) is less than κ.
Let H be any subgroup of a group G such that |H | < κ. Then every non-trivial

K < G such that |K| < κ, H < NG(K) and H ∩K = 1 is called a κ-H-signalizer.

If in this definition κ = ω, then κ-H-signalizers are called finite H-signalizers.
Notice that any conjugate of an inert subgroup is inert.

Definition. We say that infinite groups H and F are coincident if |H : H ∩F | <
|H | and |F : H ∩ F | < |F |.

An inert subgroup H is coincident with any conjugate Hg. It is easy to see
that coincident groups have the same cardinality. In the following lemma we give
further properties of the relation of coincidency. Statements (1) and (2) will be
used below.

Lemma 1. (1) Let H , F and K be infinite groups. Suppose F and K are both
coincident with H . Then the intersection F ∩K is also coincident with H .
(2) The relation of coincidency is an equivalence relation.
(3) If H and F are subgroups of G, H is inert in G and F is coincident
with H , then F is inert.

Proof: (1) If |H : H ∩ (F ∩ K)| is infinite, we will prove that |H : H ∩ F ∩
K| ≤ max{|H : H ∩ F |, |H : H ∩ K|}. Notice that any A ⊆ H of cardinality
> max{|H : H ∩F |, |H : H∩K|} contains some B ⊆ A of cardinality > max{|H :
H ∩ F |, |H : H ∩ K|} of the same coset with respect to H ∩ F , i.e. (∀g, h ∈
B)(gh−1 ∈ H ∩ F ). On the other hand the set B contains some C ⊆ B of
cardinality > max{|H : H ∩ F |, |H : H ∩K|} of the same coset with respect to
H ∩ K. As a result we have that the elements of A cannot represent pairwise
distinct cosets with respect to H ∩K ∩ F .
Assume that |F ∩ K : (F ∩ K) ∩ H | is infinite. By the previous paragraph

|F ∩K| = |H | = |K| = |F |. Now it suffices to prove that |F ∩K : F ∩K ∩H | ≤
min{|F : F ∩ H |, |K : H ∩ K|}. Let A ⊆ F ∩ K be any set of cardinality
> min{|F : F ∩H |, |K : K ∩H |}. Then there are two distinct g, h ∈ A such that
gh−1 ∈ F ∩H or gh−1 ∈ K ∩H . Therefore gh−1 ∈ F ∩K ∩H .
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(2) Assume that F is coincident with H and H is coincident with K. If
|F : F ∩K| is infinite we prove |F : F ∩K| ≤ max{|F : F ∩H |, |H : H ∩K|} by
an argument similar to the proof of part 1.

(3) Lemma 1(3) can be deduced from Lemma 1(2) as follows. Since H is inert,
H is coincident with Hg. By the assumption F is coincident with H as well as Hg

is coincident with F g. Since the relation of coincidency is an equivalence relation,
F is coincident with F g. �

The following proposition is known for countable groups [1].

Proposition 2. (1) Let G be a group of regular cardinality κ such that every
subgroup F with |F | < κ has a κ-F -signalizer. Then there is an inert subgroup
H < G such that |H | = κ and

⋂
{K ⊳H : |H : K| < |H |} is trivial.

(2) Let G be an infinite group. If G has an infinite inert subgroupH such that⋂
{K < H : |H : K| < |H |} is trivial, then G is non-trivially topologized.

Proof: (1) Let |G| = κ and G = {gα : α < κ}. We define a sequence (Hα)α<κ

of subgroups of G inductively in the following way. We put H0 = 〈g0〉. Suppose
that β < κ and for every α < β we have already defined Hα in such a way that
|Hα| < κ. Since κ is regular then the group Dβ = 〈{Hα : α < β}, {gα : α < β}〉
is also of cardinality less than κ. Now we define Hβ as a κ-Dβ-signalizer. Finally
we put H = 〈{Hα : α < κ}〉. Then H is an inert subgroup of G of cardinality
κ. To see that

⋂
{K ⊳ H : |H : K| < |H |} is trivial, take any h ∈ H and β < κ

with h ∈ 〈{Hα : α < β}〉. Since 〈{Hδ : δ ≥ β}〉 is normal in H , it suffices to
show that h /∈ 〈{Hδ : δ ≥ β}〉. If the latter is not true, find the least γ such that
h ∈ 〈{Hδ : β ≤ δ ≤ γ}〉. Since Hδ < NG(Hγ), where β ≤ δ < γ, the element h
can be presented as h′ ·h′′ with h′ ∈ 〈{Hδ : β ≤ δ < γ}〉 and h′′ ∈ Hγ \ {1}. Then
h′′ ∈ Hγ ∩Dγ , which contradicts the choice of Hγ .

(2) Let H be an inert subgroup such that
⋂
{K < H : |H : K| < |H |} is trivial.

Consider the group Sym(S), where S = {gK : g ∈ G,K < G and K is coincident
with H}. For C ⊆ S and g ∈ Sym(S) define the set Ag

C = {h ∈ Sym(S) : h|C =
g|C}. The topology given on Sym(S) by the system of basic open sets of the
form Ag

C
, where |C| < ω, is Hausdorff as well as the inherited (with respect to

the natural embedding into Sym(S)) topology on G. To see that the topology is
non-trivial we should prove that for every family {gtKt ∈ S : t < n}, n ∈ ω, the
set of all h ∈ H with hgtKt = gtKt, t < n, forms a subgroup of index < |H | in H .
Since

{h ∈ H : (∀ t < n)(hgtKt = gtKt)} = H ∩
⋂

t<n

gtKtg
−1
t ,

by Lemma 1(1) it suffices to show that any gtKtg
−1
t is coincident with H . As K

is coincident with H , any gtKtg
−1
t is coincident with gtHg

−1
t . Since the latter is

coincident with H (H is inert), H and gtKg
−1
t are coincident by Lemma 1(2).

�
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Notice that in the argument of the second statement if |H | is a strongly inac-
cessible cardinal κ and H is κ-inert, then there is another topology on Sym(S)
given by the system of basic open sets of the form Ag

C , where |C| < κ.

2. Universal locally finite groups

In this section we prove our main theorems. We start with some construction of
the countable universal locally finite group U which will play some special role in
arguments below. In fact this is a slight modification of the original construction
of Ph. Hall [2].
We build U as the union of the increasing chain of finite subgroups A0 < A1 <

. . . < An < . . . such that A0 = 〈c0〉 is isomorphic to (F2,+) and for any i any
two isomorphic subgroups of Ai are conjugate in Ai+1. At step i + 1 we define
Ai+1 as the symmetric group on Ai⊕〈ci+1〉 (|〈ci+1〉| = 2). The group Ai⊕〈ci+1〉
acts on itself by left multiplication. Then it can be considered as a subgroup of
Ai+1. This defines the extension Ai < Ai+1. The fact that

⋃
Ai is universal

locally finite can be verified as in [2]. We now see that the group C = 〈c0, c1, . . . 〉
satisfies the following lemma.

Lemma 3. Let U be the countable universal locally finite group. There exists
a (residually finite) subgroup C < U isomorphic to the vector space over F2 of
dimension ω such that for any g ∈ U the centralizer C(g)∩C is of finite index in
C (thus C is inert).

It is easy to see that any finite subgroup F < U has a finite F -signalizer. By
Proposition 2(1) there is an inert residually finite subgroup of U . Lemma 3 shows
that C is an example of such a group.
We now state some further properties of the presentation U =

⋃
Ai. Let

Ci := 〈c0, c1, . . . ci〉 (= C ∩Ai), i ∈ ω.

Lemma 4. Let i ∈ ω and B be a finite group having Ai as a subgroup. Then

there is j such that B ⊕ 〈ci+1, . . . , cj〉 embeds into Aj over 〈Ai, Cj〉.

Proof: First find k with |B⊕〈ci+1, . . . , ck〉| ≤ |Ak|. Then B⊕〈ci+1, . . . , ck+1〉 is
embeddable into Ak+1. Since any isomorphism between two subgroups of Ak+1⊕
〈ck+2〉 extends to an automorphism of Ak+2, the group B ⊕ 〈ci+1, . . . , ck+2〉 is
embeddable into Ak+2 over Ai ⊕ 〈ci+1, . . . , ck+2〉. We see that the statement of
the lemma holds for j = k + 2. �

Lemma 5. For any locally finite extension of B > C of finite index such that for
any g ∈ B the centralizer C(g) has a cofinite intersection with the base {c0, c1, . . . }
there exists a decomposition B = B0 ⊕ 〈cn+1, cn+2, . . . 〉 where B0 is a finite
subgroup of B.

Proof: Suppose that B is a locally finite extension of C satisfying the assump-
tions of the lemma. Then B = 〈b1, b2, . . . , bm, C〉, for some b1, b2, . . . , bm and
there is a natural number n such that
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(i) for every i > n and j ≤ m, cibj = bjci.

It is easy to see that the number of non-trivial finite combinations c
ǫn+1

n+1 c
ǫn+2

n+2 . . .

c
ǫn+k

n+k
, with k ∈ ω and ǫn+j ∈ {0, 1}, 1 ≤ j ≤ k, belonging to 〈b1, b2, . . . , bm,

c0, c1, . . . , cn〉 is finite. This implies that the number n can be enlarged so that

(ii) no non-trivial finite combination c
ǫn+1

n+1 c
ǫn+2

n+2 . . . c
ǫn+k

n+k
, where k ∈ ω and

ǫn+j ∈ {0, 1} for 1 ≤ j ≤ k, belongs to B0 = 〈b1, b2, . . . , bm, c0, c1, . . . , cn〉.

By (i) and (ii) we have B = B0 ⊕ 〈cn+1, cn+2, . . . 〉. �

The following lemma was suggested by the referee. It has become basic to the
main result of the section.

Lemma 6. Let B′ > B ≥ C be locally finite extensions of C of finite index such
that for any g ∈ B′ the centralizer C(g) has a cofinite intersection with the base
{c0, c1, . . . }. Then every C-embedding of B into U extends to a C-embedding of
B′ into U .

Proof: By Lemma 5 we find a natural number n such that B and B′ are decom-
posed as follows:

B = B0 ⊕ 〈cn+1, cn+2, . . . 〉 and B
′ = B′

0 ⊕ 〈cn+1, cn+2, . . . 〉,

where B′
0 > B0 > Cn are finite subgroups of B

′ > B > C respectively.

We now see that any Cn-embedding of B
′
0 into An can be naturally extended

to an embedding of B′ into U over C. By Lemma 4 we may assume that there is
a Cn-embedding of B

′
0 into An (enlarging n if necessary). Thus there exists an

embedding g : B′ → U over C.
Let f : B → U be a C-embedding. Find m such that f(B0) ⊆ Am. Then

f(〈B0, Cm〉) ⊆ Am. We may assume that m ≥ n where n is chosen as above.
Then the natural isomorphism (induced by f · g−1)

g(〈B0, Cm〉)⊕ 〈cm+1〉 → f(〈B0, Cm〉)⊕ 〈cm+1〉

extends to an automorphism h of Am+1. Define a Cm+1-embedding 〈B
′
0, Cm+1〉

→ Am+1 by f
′ := h·g. By the definition of h, the map f ′ extends f on 〈B′

0, Cm+1〉.
Extending f ′ to a C-embedding we obtain the required embedding. �

Theorem 7. (1) There is a universal locally finite group of cardinality ω1 with
a countable inert residually finite subgroup.

(2) For every uncountable cardinal κ there exists a universal locally finite
group G of cardinality κ with the following properties:
(a) there exists an inert residually finite subgroup H < G of cardinality κ;
(b) if κ is regular then there is no inert subgroup of cardinality < κ.
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Proof: (1) Let U be the countable universal locally finite group. Find a subgroup
C as in Lemma 3. First we want to show that there is a proper subgroup of U
isomorphic to U over C.

We again consider U as the union of a chain of finite subgroups A0 < A1 <
. . . defined as in the construction before Lemma 3. We preserve all notation
introduced there.

Let K be a non-trivial finite group. Define Bi := 〈Ai, C〉 × K as a natural
extension of 〈Ai, C〉. By Lemma 6 there is a sequence of C-embeddings fi : Bi →
U such that fi ⊆ fi+1 for all i = 0, 1, . . . . Set f =

⋃
fi. Then f is a C-embedding

of U × K into U and f(U) is a proper subgroup of U which is isomorphic to U
over C. It is clear that C is inert in that subgroup.

We now build the group from the formulation of the theorem as the union
of an increasing chain of universal locally finite groups containing C as an inert
subgroup. At every step of the construction we use the embedding constructed
above. If the chain is of length ω1, then the union is a universal locally finite
group satisfying the statement of the theorem.

(2) We construct G as the union
⋃
Gδ of an increasing chain. At every step δ

we define an element aδ ∈ Gδ. Then the group generated by all aδ will serve as
an inert residually finite subgroup. We start with a countable universal locally
finite group G0 and a non-trivial a0 ∈ G0. At step δ + 1 extend Gδ ×Gδ by an
element cδ of order 2 such that (a, 1) · cδ = cδ · (1, a) for all a ∈ Gδ . Here we
identify Gδ with (Gδ , 1). Let aδ+1 ∈ (1, Gδ) be non-trivial. It is easy to see that
any finitely generated subgroup of the obtained group is finite. Thus it can be
embedded into a universal locally finite group Gδ+1 of the same cardinality. At
the limit steps of the construction we take the unions.

The construction implies that A = 〈{aα : α < κ}〉 is a direct sum of finite
cyclic groups. Thus A is residually finite. Moreover for any g ∈ Gδ and any aγ

with δ < γ we have g · aγ = aγ · g. This guarantees that A is inert. If κ is regular
and B is a subgroup with |B| < |G| then there is γ < κ such that B ⊆ Gγ . Then
Bcγ ∩B = {1} and B is not inert in G. �

3. Frequency

Theorem 7 implies that there are several universal locally finite groups of car-
dinality ω1 with inert residually finite subgroups. Macintyre and Shelah have
shown in [6] that there exist 2ω1 uncountable universal locally finite groups. Is
it true that all of them have inert residually finite subgroups? We now analyse
the method from [6]. It is based on some model theory for infinitary extensions
of the first-order logic. The logic Lω1,ω considers sets of formulas closed under
quantification and countable conjunctions and disjunctions. For a structure M
and a subset A ⊆ M a type over A depending on variables x1, . . . , xn is a maxi-
mal set p of formulas φ(x1, . . . , xn) with parameters from A such that the theory
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Th(M,a)a∈A∪p (in an appropriate logic) is consistent. A tuple b1, . . . , bn realizes
p if every formula of p is satisfied by b1, . . . , bn.
The following proposition develops Lemma 5 from [6].

Proposition 8. Let H be an uncountable locally finite group and φ be an Lω1,ω-

sentence which holds in H . Then the class K of all groups G such that G |= φ
and G has an ω-inert residually finite subgroup, is not empty and K is a reduct
of a class axiomatizable by a single sentence of Lω1,ω.

Proof: Consider the following theory in the language of a group with a unary
predicate P :

- {φ} ∪ {P defines an infinite subgroup };

(∀x)(
∨

n,m

(∃y1, . . . , yn ∈ P, z1, . . . , zm ∈ Px)(∀y ∈ P, z ∈ Px)

(∃y′, z′ ∈ P ∩ Px)
∨

i≤n;j≤m

(y = yi · y
′ ∧ z = zj · z

′));

- P is a residually finite group.

By a theorem from [7] the latter property can be expressed in Lω1,ω by a for-
mula.
It remains to prove that for every uncountable locally finite groupH , any theory

of this form has a (countable) model. By the main result of [1] all locally finite
groups having a finite subgroup without finite signalizers are countable. Thus for
every finite subgroup D < H there is a finite D-signalizer in H . This can be
expressed by an infinite disjunction θ of first-order formulas of the following form

(∀x1, . . . , xn)(
∧

i,j

∨

k

(xixj = xk)→ (∃y1, . . . , ym)(
∧

i,j

∨

k

(yiyj = yk)∧

({x1, . . . , xn} ∩ {y1, . . . , ym} = {1}) ∧
∧

i,j

∨

k

(x−1i yjxi = yk))).

By Downward Lowenheim-Skolem Theorem ([5, p. 69]) for any uncountable struc-
tureM and any sentence ψ ∈ Lω1,ω withM |= ψ there is a countable substructure
satisfying ψ. Let H0 be such a group chosen for H and φ∧θ. Then by the version
of Proposition 2(1) for κ = ℵ0 (originally proved in [1]) the group H0 has an
infinite inert residually finite subgroup. �

By the Lω1,ω-version of Theorem 5.2 from [8] if in every uncountable κ there
exist a model of the sentence constructed in the proof then for every infinite
cardinality κ there is a group G as in the formulation and of cardinality κ with
the additional property that for every countable A ⊂ G the structure G realizes
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only countably many types over A. The author does not know if in the case of
universal locally finite groups the class K has a member in every cardinality.
On the other hand the following constructions provides groups with opposite

properties. Let α be an infinite cardinal < κ. Consider Sα
3 where S3 = 〈g1, g2 :

|g1| = 2, |g2| = 3, [g1, g2] 6= 1〉 is the symmetric group on {0, 1, 2}. Let Π be a
family of α+ subsets of α. Let P0 be the subgroup generated by all elements of
the form fi ∈ {1, g1}

α with fi(γ) = g1 iff γ = i (i < α). Let P be the subgroup
generated by P0 and all elements of the form rX ∈ {1, g2}

α with rX(γ) = 1 iff
γ ∈ X (X ∈ Π). Enumerate P = {pδ : δ < α+}.
If α+ < κ, we construct a universal locally finite group G(P ) of cardinality κ

as the union
⋃
Gδ of an increasing chain so that P < G(P ). At Step 0 let G0 be

a universal locally finite group of cardinality α+ containing P . We now repeat
the construction of the second part of Theorem 7. The obtained group satisfies
the statement of that theorem and P0 is a subgroup of cardinality α such that
α+ types over P0 are realized . Each of these types consists of all formulas with
parameters from P0 realized by an appropriate rX . Notice that for X 6= X ′, say
i ∈ X \X ′, the formula [x, fi] = 1 is realized by rX but not realized by rX′ .
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