Article
Keywords:
frame of reals; lattice ordered rings of real valued continuous functions and integer valued continuous functions; extremally disconnected frame; basically disconnected frame; cozero map
Summary:
This note establishes that the familiar internal characterizations of the Tychonoff spaces whose rings of continuous real-valued functions are complete, or $\sigma$-comp\-lete, as lattice ordered rings already hold in the larger setting of pointfree topology. In addition, we prove the corresponding results for rings of integer-valued functions.
References:
[1] Ball R.N., Walters-Wayland J.L.:
$C$- and $C^*$-embedded sublocales. Dissertationes Math. 412 (2002).
MR 1952051 |
Zbl 1012.54025
[2] Banaschewski B.:
Universal zero-dimensional compactifications. In Categorical Topology and its Relation to Analysis, Algebra, and Combinatorics, Prague, Czechoslovakia, August 1988, World Scientific, Singapore, 1989, pp. 257-269.
MR 1047906
[3] Banaschewski B.:
The frame envelope of a $\sigma$-frame. Quaest. Math. 16 (1993), 51-60.
MR 1217474 |
Zbl 0779.06009
[4] Banaschewski B.:
The real numbers in pointfree topology. Textos de Matemática Série B, No. 12, Departamento de Matemática da Universidade de Coimbra, 1997.
MR 1621835 |
Zbl 0891.54009
[7] Johnstone P.T.:
Conditions related to De Morgan's law. In Applications of Sheaves, Proceedings, Durham, 1977, Springer LNM 753 (1979), pp. 479-491.
MR 0555556 |
Zbl 0445.03041
[8] Johnstone P.T.:
Stone Spaces, Cambridge Studies in Advanced Mathematics 3, Cambridge University Press, 1982.
MR 0698074
[9] Nakano H.:
Über das System aller stetigen Funktionen auf einen topologischen Raum. Proc. Imp. Acad. Tokyo 17 (1941), 308-310.
MR 0014173
[11] Vickers S.:
Topology via Logic. Cambridge Tracts in Theor. Comp. Sci. No 5, Cambridge University Press, 1985.
MR 1002193 |
Zbl 0922.54002