Article
Keywords:
canonical coloring; forests; van der Waerden's theorem; arithmetic progression
Summary:
T. Brown proved that whenever we color $\Cal P_{f} (\Bbb N)$ (the set of finite subsets of natural numbers) with finitely many colors, we find a monochromatic structure, called an arithmetic copy of an $\omega $-forest. In this paper we show a canonical extension of this theorem; i.e\. whenever we color $\Cal P_{f}(\Bbb N)$ with arbitrarily many colors, we find a canonically colored arithmetic copy of an $\omega $-forest. The five types of the canonical coloring are determined. This solves a problem of T. Brown.
References:
[BeLe-99] Bergelson V., Leibman A.:
Set-polynomials and polynomial extension of Hales-Jewett Theorem. Ann. Math. 150 (1999), 33-75.
DOI 10.2307/121097 |
MR 1715320
[Br-00] Brown T.C.:
Monochromatic forests of finite subsets of $\Bbb N$. Integers: Electronic Journal of Combinatorial Number Theory 0 (2000).
MR 1759422
[ErGr-80] Erdös P., Graham R.L.:
Old and New Problems and Results in Combinatorial Number Theory. L'Enseignement Mathématique, Genève, 1980.
MR 0592420
[Ne-95] Nešetřil J.:
Ramsey Theory. in Handbook of Combinatorics, editors R. Graham, M. Grötschel and L. Lovász, Elsevier Science B.V., 1995, pp.1333-1403.
MR 1373681
[NeRo-84] Nešetřil J., Rödl V.:
Combinatorial partitions of finite posets and lattices-Ramsey lattices. Algebra Universalis 19 (1984), 106-119.
DOI 10.1007/BF01191498 |
MR 0748915