Previous |  Up |  Next

Article

Keywords:
Lipschitzian mappings; minimal displacement
Summary:
We give an example of uniformly rotund in every direction space for which the minimal displacement characteristic is maximal.
References:
[1] Benyamini Y., Sternfeld Y.: Spheres in infinite dimensional normed spaces are Lipschitz contractible. Proc. Amer. Math. Soc. 88 (1983), 439-445. MR 0699410 | Zbl 0518.46010
[2] Bolibok K.: Constructions of Lipschitzian mappings with non zero minimal displacement in spaces $L^{1}(0,1)$ and $L^{2}(0,1)$. Annal. Univ. Marie Curie-Sklodowska L (1996), 25-31. MR 1472574
[3] Bolibok K.: Minimal displacement and retraction problems in the space $l^{1}$. Nonlinear Analysis Forum 3 (1998), 13-23. MR 1646488
[4] Bolibok K., Goebel K.: A note on minimal displacement and retraction problems. J. Math. Anal. Appl. 206 (1997), 308-314. MR 1429293 | Zbl 0883.47066
[5] Goebel K.: On the minimal displacement of points under Lipschitzian mappings. Pacific J. Math. 48 (1973), 151-163. MR 0328708 | Zbl 0265.47046
[6] Goebel K., Kirk W.A.: Topics in Metric Fixed Point Theory. Cambridge University Press, Cambridge, 1990. MR 1074005
[7] Lin P.K., Sternfeld Y.: Convex sets with the Lipschitz fixed point property are compact Proc. Amer. Math. Soc. 93 (1985), 633-639. MR 0776193
[8] Schauder J.: Der Fixpunktsatz in Funkionalraumen. Studia Math. 2 (1930), 171-180.
[9] Zizler V.: On some rotundity and smoothness properties of Banach spaces. Rozprawy Mat. 87 (1971). MR 0300060 | Zbl 0231.46036
Partner of
EuDML logo