Article
Keywords:
Lipschitzian mappings; minimal displacement
Summary:
We give an example of uniformly rotund in every direction space for which the minimal displacement characteristic is maximal.
References:
[1] Benyamini Y., Sternfeld Y.:
Spheres in infinite dimensional normed spaces are Lipschitz contractible. Proc. Amer. Math. Soc. 88 (1983), 439-445.
MR 0699410 |
Zbl 0518.46010
[2] Bolibok K.:
Constructions of Lipschitzian mappings with non zero minimal displacement in spaces $L^{1}(0,1)$ and $L^{2}(0,1)$. Annal. Univ. Marie Curie-Sklodowska L (1996), 25-31.
MR 1472574
[3] Bolibok K.:
Minimal displacement and retraction problems in the space $l^{1}$. Nonlinear Analysis Forum 3 (1998), 13-23.
MR 1646488
[4] Bolibok K., Goebel K.:
A note on minimal displacement and retraction problems. J. Math. Anal. Appl. 206 (1997), 308-314.
MR 1429293 |
Zbl 0883.47066
[5] Goebel K.:
On the minimal displacement of points under Lipschitzian mappings. Pacific J. Math. 48 (1973), 151-163.
MR 0328708 |
Zbl 0265.47046
[6] Goebel K., Kirk W.A.:
Topics in Metric Fixed Point Theory. Cambridge University Press, Cambridge, 1990.
MR 1074005
[7] Lin P.K., Sternfeld Y.:
Convex sets with the Lipschitz fixed point property are compact Proc. Amer. Math. Soc. 93 (1985), 633-639.
MR 0776193
[8] Schauder J.: Der Fixpunktsatz in Funkionalraumen. Studia Math. 2 (1930), 171-180.
[9] Zizler V.:
On some rotundity and smoothness properties of Banach spaces. Rozprawy Mat. 87 (1971).
MR 0300060 |
Zbl 0231.46036