Previous |  Up |  Next

Article

Keywords:
sequential; strongly sequential; Fréchet; Tanaka topology
Summary:
Strongly sequential spaces were introduced and studied to solve a problem of Tanaka concerning the product of sequential topologies. In this paper, further properties of strongly sequential spaces are investigated.
References:
[1] Dolecki S.: Convergence-theoretic approach to quotient quest. Topology Appl. 73 1-21 (1996). MR 1413721 | Zbl 0862.54001
[2] Dolecki S., Mynard F.: Convergence-theoretic mechanism behind product theorems. Topology Appl. 104 67-99 (2000). MR 1780899
[3] Dolecki S., Nogura T.: Two-fold theorem on Fréchetness of products. Czech. Math. J. 49 (124) 421-429 (1999). MR 1692508 | Zbl 0949.54010
[4] Dolecki S., Nogura T.: Countably infinite products of sequential topologies. to appear. MR 1885785 | Zbl 0991.54028
[5] Engelking R.: Topology. PWN, 1977. Zbl 0932.01059
[6] Handbook of Set-theoretic Topology: edited by K. Kunen and J.E. Vaughan, North-Holland Publ., 1984. MR 0776619
[7] Michael E.: A quintuple quotient quest. Gen. Topology Appl. 2 91-138 (1972). MR 0309045 | Zbl 0238.54009
[8] Michael E.: Local compactness and cartesian product of quotient maps and $k$-spaces. Ann. Inst. Fourier (Grenoble) 19 281-286 (1968). MR 0244943
[9] Michael E., Olson R.C., Siwiec D.: $A$-spaces and countably biquotient maps. Dissertationes Math. 133 (1976).
[10] Mynard F.: Strongly sequential spaces. Comment. Math. Univ. Carolinae 41.1 (2000), 143-153. MR 1756935 | Zbl 1037.54504
[11] Mynard F.: Coreflectively modified continuous duality applied to classical product theorems. Applied General Topology 2 (2) (2002), 119-154. MR 1890032
[12] Tanaka Y.: Products of sequential spaces. Proc. Amer. Math. Soc. 54 371-375 (1976). MR 0397665 | Zbl 0292.54025
[13] Tanaka Y.: Private communication. November 2000.
[14] Tanaka Y.: Private communication. June 2001.
Partner of
EuDML logo