Previous |  Up |  Next

Article

Keywords:
ultracompleteness; Čech-completeness; countable type; pointwise countable type
Summary:
We prove that if $X^n$ is a union of $n$ subspaces of pointwise countable type then the space $X$ is of pointwise countable type. If $X^\omega $ is a countable union of ultracomplete spaces, the space $X^\omega $ is ultracomplete. We give, under CH, an example of a Čech-complete, countably compact and non-ultracomplete space, giving thus a partial answer to a question asked in [BY2].
References:
[Ar] Arhangel'skiĭ A.V.: Bicompact sets and the topology of spaces. Dokl. Akad. Nauk SSSR 150 (1963), 9-12. MR 0150733
[BY1] Buhagiar D., Yoshioka I.: Ultracomplete topological spaces. preprint. MR 1924245 | Zbl 1019.54015
[BY2] Buhagiar D., Yoshioka I.: Sums and products of ultracomplete topological spaces. Topology Appl., to appear. MR 1919293 | Zbl 1019.54015
[BGT] Balogh Z, Gruenhage G., Tkachuk V.: Additivity of metrizability and related properties. Topology Appl. (1998), 84 91-103. MR 1611277 | Zbl 0991.54032
[Lo] López de Luna M.: Some new results on Čech-complete spaces. Topology Proceedings, vol.24, 1999. MR 1876382
[Pa] Pasynkov B.A.: Almost metrizable topological groups (in Russian). Dokl. Akad. Nauk SSSR (1965), 161.2 281-284. MR 0204565
[PT] Ponomarev V.I., Tkachuk V.V.: The countable character of $X$ in $\beta X$ compared with the countable character of the diagonal in $X\times X$. Vestnik Moskovskogo Universiteta, Matematika, 42 (1987), 5 16-19. MR 0913263 | Zbl 0652.54003
[Tk] Tkachuk V.V.: Finite and countable additivity topological properties in nice spaces. Trans. Amer. Math. Soc. (1994), 341 585-601. MR 1129438
[Tk1] Tkachenko M.G.: On a property of bicompacta. Seminar on General Topology, ed. by P.S. Alexandroff, Mosc. Univ. P.H., Moscow, 1981, pp.149-156. MR 0656955 | Zbl 0491.54002
Partner of
EuDML logo