Previous |  Up |  Next

Article

Keywords:
linearly Lindelöf; weak P-point
Summary:
There is a locally compact Hausdorff space which is linearly Lindelöf and not Lindelöf. This answers a question of Arhangel'skii and Buzyakova.
References:
[1] Arhangel'skii A.V., Buzyakova R.Z.: Convergence in compacta and linear Lindelöfness. Comment. Math. Univ. Carolinae 39 (1998), 159-166. MR 1623006 | Zbl 0937.54022
[2] Baker J., Kunen K.: Limits in the uniform ultrafilters. Trans. Amer. Math. Soc. 353 (2001), 4083-4093. MR 1837221 | Zbl 0972.54019
[3] Chang C.C., Keisler H.J.: Model Theory. Third Edition, North-Holland, 1990. MR 1059055 | Zbl 0697.03022
[4] Dow A.: Good and OK ultrafilters. Trans. Amer. Math. Soc. 290 (1985), 145-160. MR 0787959 | Zbl 0532.54021
[5] Keisler H.J.: Good ideals in fields of sets. Ann. of Math. 79 (1964), 338-359. MR 0166105 | Zbl 0137.00803
[6] Keisler H.J.: Ultraproducts of finite sets. J. Symbolic Logic 32 (1967), 47-57. MR 0235998 | Zbl 0153.01702
[7] Kunen K.: Ultrafilters and independent sets. Trans. Amer. Math. Soc. 172 (1972), 299-306. MR 0314619
Partner of
EuDML logo