Article
Keywords:
Lipschitz Fréchet derivative; d.c. functions
Summary:
Let $X = \ell_p$, $p \in (2,+\infty)$. We construct a function $f:X \to \Bbb R$ which has Lipschitz Fréchet derivative on $X$ but is not a d.c. function.
References:
[DGZ] Deville R., Godefroy G., Zizler V.:
Smoothness and Renormings in Banach Spaces. Longman (1993).
MR 1211634 |
Zbl 0782.46019
[DVZ] Duda J., Veselý L., Zajíček L.: On d.c. functions and mappings. submitted to Atti Sem. Mat. Fis. Univ. Modena.
[VZ] Veselý L., Zajíček L.:
Delta-convex mappings between Banach spaces and applications. Dissertationes Math. (Rozprawy mat.) 289 (1989), 52 pp.
MR 1016045