[1] Berg C., Forst G.:
Potential theory on locally compact Abellian Groups. Springer-Verlag, Berlin-Heidelberg-New York, 1975.
MR 0481057
[2] Boboc N., Bucut G., Cornea A.: Order and Convexity in Potential Theory. Lecture Notes in Math. 853, Springer, Berlin-Heidelberg-New York, 1980.
[4] Fitzsimmons P.J.:
Markov processes and non symmetric Dirichlet forms without regularity. J. Funct. Anal. 85 287-306 (1989).
MR 1012207
[5] Fitzsimmons P.J., Getoor R.K.:
On the potential theory of symmetric Markov processes. Math. Ann. 281 495-512 (1988).
MR 0954155 |
Zbl 0627.60067
[6] Fukushima M.:
Dirichlet Forms and Markov Processes. North-Holland, Amsterdam-Oxford-New York, 1980.
MR 0569058 |
Zbl 0422.31007
[8] Getoor R.K., Glover J.:
Riesz decomposition in Markov process theory. Trans. Amer. Math. Soc. 285 107-132 (1989).
MR 0748833
[9] Getoor R.K., Sharpe M.P.:
Naturality standardness and weak duality for Markov processes. Z. Wahrsch verw. Gebiete 67 1-62 (1984).
MR 0756804 |
Zbl 0553.60070
[10] Hmissi M.:
Lois de sortie et semi-groupes basiques. Manuscripta Math. 75 293-302 (1992).
MR 1167135 |
Zbl 0759.60080
[12] Hmissi M.:
On the functional equation of exit laws for lattice semi-groups. Ann. Ecole Normale Superieure de Cracowie 196 63-72 (1998).
MR 1826075
[13] Janssen K.:
Representation of excessive measures. Sem. Stoch. Processes Birkhäuser, Boston, Mass., 1987, pp.85-105.
MR 0902428 |
Zbl 0619.47035
[14] Silverstein M.:
Symmetric Markov Processes. Lecture Notes in Math. 426, Springer, Berlin-Heidelberg-New York, 1974.
MR 0386032 |
Zbl 0331.60046