Previous |  Up |  Next

Article

Keywords:
embedding theorems; integral representations; conjugation; projections
Summary:
In this paper some embedding theorems related to fractional integration and differentiation in harmonic mixed norm spaces $h(p,q,\alpha )$ on the half-space are established. We prove that mixed norm is equivalent to a ``fractional derivative norm'' and that harmonic conjugation is bounded in $h(p,q,\alpha )$ for the range $0<p\leq \infty $, $0<q\leq \infty $. As an application of the above, we give a characterization of $h(p,q,\alpha )$ by means of an integral representation with the use of Besov spaces.
References:
[1] Benedek A., Panzone R.: The spaces $L^P$, with mixed norm. Duke Math. J. 28 (1961), 301-324. MR 0126155
[2] Bergman S.: Über unendliche Hermitische Formen, die zu einem Bereiche gehören, nebst Anwendungen auf Fragen der Abbildung durch Funktionen von zwei komplexen Veränderlichen. Math. Z. 29 (1929), 641-677. MR 1545028
[3] Bergman S.: The Kernel Function and Conformal Mapping. Math. Surveys, No. 5, New York, 1950. MR 0038439 | Zbl 0473.30006
[4] Bui Huy Qui: Harmonic functions, Riesz potentials, and the Lipschitz spaces of Herz. Hiroshima Math. J. 9 (1979), 245-295. MR 0529335
[5] Djrbashian A.E.: The classes $A_\alpha^p$ of harmonic functions in half-spaces and an analogue of M. Riesz' theorem. Izv. Akad. Nauk Arm. SSR, Matematika 22 4 (1987), 386-398 (in Russian); English transl.: Soviet J. Contemp. Math. Anal. (Armenian Academy of Sciences) 22 (1987), no. 4, 74-85. MR 0931892
[6] Djrbashian A.E., Karapetyan A.H.: Integral inequalities between conjugate pluriharmonic functions in multidimensional domains. Izv. Akad. Nauk Arm. SSR, Matematika 23 (1988), 3 216-236 (in Russian); English transl.: Soviet J. Contemp. Math. Anal. (Armenian Academy of Sciences) 23 (1988), no. 3, 20-42. MR 0976482
[7] Djrbashian A.E., Shamoyan F.A.: Topics in the Theory of $A_\alpha^p$ Spaces. Teubner-Texte zur Math., b. 105, Teubner, Leipzig, 1988. MR 1021691
[8] Djrbashian M.M.: On canonical representation of functions meromorphic in the unit disk. Dokl. Akad. Nauk Arm. SSR 3 (1945), 3-9 (in Russian).
[9] Djrbashian M.M.: On the representation problem of analytic functions. Soobshch. Inst. Matem. Mekh. Akad. Nauk Arm. SSR 2 (1948), 3-40 (in Russian).
[10] Djrbashian M.M., Djrbashian A.E.: Integral representation for some classes of functions in a half-plane. Dokl. Akad. Nauk SSSR 285 (1985), 547-550 (in Russian). MR 0821337
[11] Fefferman C., Stein E.M.: $H^p$ spaces of several variables. Acta Math. 129 (1972), 137-193. MR 0447953
[12] Flett T.M.: Mean values of power series. Pacific J. Math. 25 (1968), 463-494. MR 0229807 | Zbl 0162.10002
[13] Flett T.M.: Inequalities for the $p$th mean values of harmonic and subharmonic functions with $p\le 1$. Proc. London Math. Soc. (3) 20 (1970), 249-275. MR 0257387
[14] Flett T.M.: On the rate of growth of mean values of holomorphic and harmonic functions. Proc. London Math. Soc. (3) 20 (1970), 749-768. MR 0268388 | Zbl 0211.39203
[15] Flett T.M.: The dual of an inequality of Hardy and Littlewood and some related inequalities. J. Math. Anal. Appl. 38 (1972), 746-765. MR 0304667 | Zbl 0246.30031
[16] Holmstedt T.: Interpolation of quasi-normed spaces. Math. Scand. 26 (1970), 177-199. MR 0415352 | Zbl 0193.08801
[17] Ramey W.C., Yi H.: Harmonic Bergman functions on half-spaces. Trans. Amer. Math. Soc. 348 (1996), 633-660. MR 1303125 | Zbl 0848.31004
[18] Ricci F., Taibleson M.: Boundary values of harmonic functions in mixed norm spaces and their atomic structure. Annali Scuola Nor. Sup. - Pisa, Ser. IV, 10 (1983), 1-54. MR 0713108 | Zbl 0527.30040
[19] Shamoyan F.A.: Applications of Djrbashian's integral representations to the certain problems of analysis. Dokl. Akad. Nauk SSSR 261 (1981), 3 557-561 (in Russian). MR 0638930
[20] Shamoyan F.A.: Some remarks on the parametric representation of Nevanlinna-Djrbashian classes. Mat. Zametki 52 (1992), 1 128-140 (in Russian); English transl.: Math. Notes 52 (1993), no. 1-2, 727-737. MR 1187723
[21] Shi J.H.: Inequalities for the integral means of holomorphic functions and their derivatives in the unit ball of $\Bbb C^n$. Trans. Amer. Math. Soc. 328 (1991), 619-637. MR 1016807
[22] Stein E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton Univ. Press, Princeton, New Jersey, 1970. MR 0290095 | Zbl 0281.44003
[23] Taibleson M.: On the theory of Lipschitz spaces of distributions on Euclidean $n$-space, I. Principal properties. J. Math. Mech. 13 (1964), 407-479. MR 0163159
[24] Yi H.: Harmonic little Bloch functions on half-spaces. Math. Japonica 47 (1998), 21-28. MR 1606287 | Zbl 0924.31003
[25] Avetisyan K.L.: Fractional integration and integral representations in weighted classes of harmonic functions. Analysis Math. 26 (2000), 161-174. MR 1792883 | Zbl 0997.30030
Partner of
EuDML logo