Previous |  Up |  Next

Article

Keywords:
distributional chaos; topological entropy; star maps
Summary:
Let $\Bbb X =\{z\in \Bbb C:z^n\in [0,1]\}$, $n\in \Bbb N$, and let $f:\Bbb X \rightarrow \Bbb X$ be a continuous map having the branching point fixed. We prove that $f$ is distributionally chaotic iff the topological entropy of $f$ is positive.
References:
[1] Adler R.L., Konheim A.G., McAndrew M.H.: Topological entropy. Trans. Amer. Math. Soc. 114 (1965), 309-319. MR 0175106 | Zbl 0127.13102
[2] Alsedá L., Llibre J., Misiurewicz M.: Combinatorial Dynamics and Entropy in Dimension One. World Scientific Publishing, 1993. MR 1255515
[3] Alsedá L., Moreno J.M.: Linear orderings and the full periodicity kernel for the $n$-star. J. Math. Anal. Appl. 180 (1993), 599-616. MR 1251878
[4] Alsedá L., Ye X.: Division for star maps with the branching point fixed. Acta Math. Univ. Comenian. 62 (1993), 237-248. MR 1270511
[5] Babilonová M.: Distributional chaos for triangular maps. Ann. Math. Sil. 13 (1999), 33-38. MR 1735188
[6] Baldwin S.: An extension of Sarkovskii's Theorem to the n-od. Ergodic Theory Dynamical Systems 11 (1991), 249-271. MR 1116640
[7] Block L.S., Coppel W.A.: Dynamics in one dimension. Lecture Notes in Math. Springer-Verlag, 1992. MR 1176513 | Zbl 0746.58007
[8] Blokh A.: The spectral decomposition for one-dimensional maps. Dynamics Reported (Jones et al, eds.) 4, Springer-Verlag, Berlin, 1995. MR 1346496 | Zbl 0828.58009
[9] Cánovas J.S., Ruíz-Marín M., Soler-López G.: Distributional chaos in duopoly games. preprint, 2000.
[10] Forti G.L., Paganoni L.: A distributionally chaotic triangular map with zero topological sequence entropy. Math. Pannon. 9 (1998), 147-152. MR 1620434
[11] Forti G.L., Paganoni L., Smítal J.: Dynamics of homeomorphisms on minimal sets generated by triangular mappings. Bull. Austral. Math. Soc. 59 (1999), 1-20. MR 1672771
[12] Hric R.: Topological sequence entropy for maps of the circle. Comment. Math. Univ. Carolinae 41 (2000), 53-59. MR 1756926 | Zbl 1039.37007
[13] Li T.Y., Yorke J.A.: Period three implies chaos. Amer. Math. Monthly 82 (1975), 985-992. MR 0385028 | Zbl 0351.92021
[14] Liao G., Fan Q.: Minimal subshifts which display Schweizer-Smítal chaos and have zero topological entropy. Science in China 41 (1998), 33-38. MR 1612875 | Zbl 0931.54034
[15] Málek M.: Distributional chaos for continuous mappings of the circle. Ann. Math. Sil. 13 (1999), 205-210. MR 1735203
[16] Llibre J., Misiurewicz M.: Horseshoes, entropy and periods for graph maps. Topology 32 (1993), 649-664. MR 1231969 | Zbl 0787.54021
[17] Schweizer B., Smítal J.: Measures of chaos and a spectral decomposition of dynamical systems on the interval. Trans. Amer. Math. Soc. 344 (1994), 737-754. MR 1227094
[18] Smítal J.: Chaotic functions with zero topological entropy. Trans. Amer. Math. Soc. 297 (1986), 269-282. MR 0849479
Partner of
EuDML logo