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Distributional chaos on tree maps: the star case

Jose S. Cánovas

Abstract. Let X = {z ∈ C : zn ∈ [0, 1]}, n ∈ N, and let f : X → X be a continuous
map having the branching point fixed. We prove that f is distributionally chaotic iff the
topological entropy of f is positive.
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Classification: 37B40, 37E25, 37D45

1. Introduction

Let (X, d) be a compact metric space and let C(X) be the set of continuous
maps f : X → X . The pair (X, f) is called a discrete dynamical system. For
any x ∈ X , the sequence (f i(x))∞i=0 is called the trajectory of x (also orbit of x).

For x, y ∈ X , denote δx,y(i) = d(f i(x), f i(y)) for i ≥ 0. This paper deals with
several notions of chaos for discrete dynamical systems. All these notions are
closely related to δx,y(i) for x, y ∈ X .
The first notion we introduce is distributional chaos. For any set B we denote

by Card(B) its cardinality. As usual, N and R denote the sets of positive integers
and real numbers, respectively. For any t ∈ R+ and any n ∈ N, let

ξ(x, y, t, n, f) =

n−1∑

i=0

χ[0,t)(δx,y(i)) = Card({i : 0 ≤ i ≤ n − 1 and δx,y(i) < t}),

where χ[0,t) is the characteristic function of the interval [0, t). Let us define the

upper and lower distribution functions as:

F ∗
x,y(t) = lim sup

n→∞

1

n
ξ(x, y, t, n, f)

and

Fx,y(t) = lim inf
n→∞

1

n
ξ(x, y, t, n, f).

Both Fx,y and F ∗
x,y are non-decreasing functions satisfying F ∗

x,y(t) = Fx,y(t) = 0

for all t < 0 and F ∗
x,y(t) = Fx,y(t) = 1 for all t > diam(X), where diam(X)
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denotes the diameter of X . We identify distribution functions which are indistin-
guishable in the L1 metric. So, we can choose F ∗

x,y and Fx,y to be left-continuous.

A function f ∈ C(X) is said to be distributionally chaotic if there are x, y ∈ X
such that χ(0,∞) = F ∗

x,y > Fx,y (see [17]). We will use capital letters to denote

distribution functions.
A more common definition of chaos can be given as follows (see [13] or [18]).

A subset S ⊂ X is called scrambled for f if for any x, y ∈ S, x 6= y, it holds that
lim supn→∞ δx,y(n) > 0 and lim infn→∞ δx,y(n) = 0. We say that f is chaotic in
the sense of Li-Yorke if there is an uncountable scrambled set for f .
There is another way of measuring different behavior of trajectories. This

measure is given by topological entropy (see [1] or [2]). For each positive integer
n and for any pair of points x and y we denote dn(x, y) = max{δx,y(i) : 0 ≤ i ≤
n − 1}. A finite set E is called (n, ǫ)-separated if for all x, y ∈ E, x 6= y, it holds
that dn(x, y) > ǫ. Let sn(f, ǫ) be the maximal cardinality of an (n, ǫ)-separated
set. The topological entropy of f is defined by

h(f) := lim
ǫ→0
lim sup
n→∞

1

n
log sn(f, ǫ).

When one-dimensional maps (X = I = [0, 1]) are concerned, the relationship
between distributional chaos and topological entropy is stated by the following
result (see [17]).

Theorem 1. Let f ∈ C(I).

(a) If h(f) = 0, then Fx,y = F ∗
x,y for all x, y ∈ I. Moreover, if

lim infi→∞ δx,y(i) = 0 then Fx,y = χ(0,∞).

(b) If h(f) > 0, then there exist x, y and t in I such that
χ(0,∞) = F ∗

x,y(t) > Fx,y(t).

Additionally, if f ∈ C(X) is distributionally chaotic, then it is chaotic in the
sense of Li-Yorke (see e.g. [17]). In the interval case, Li-Yorke chaotic maps with
zero topological entropy, and hence non-distributionally chaotic, can be found
in [18].
In the setting of two-dimensional maps the situation is more complicated. In

general, Theorem 1 does not hold. More precisely, it was shown in [10] and
[11] that there are distributionally chaotic maps with zero topological entropy.
Even more, there is a wider definition of distributional chaos and there is a two-
dimensional map which is distributionally chaotic in this new sense and non-
chaotic in the sense of Li-Yorke [5] (both definitions of distributional chaos are
equivalent for interval maps [17]).
For circle maps Theorem 1 holds (see [15]). Additionally, following [12], there

are Li-Yorke chaotic circle maps which are not distributionally chaotic. So, the
one dimensional case remains open. More precisely, does Theorem 1 hold for
continuous maps defined on finite graphs?
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In this paper we consider the n-star X := {z ∈ C : zn ∈ [0, 1]}, n ∈ N.
Continuous maps of the n-star have been studied in the literature (see [3], [4]
or [6]) from the point of view of topological dynamics. Let 0 ∈ C be the branching
point of X. Let X0 := {f ∈ C(X) : f(0) = 0}. The aim of this paper is to prove
the following result:

Theorem 2. Let f ∈ X0.

(a) If h(f) = 0, then Fx,y = F ∗
x,y for all x, y ∈ X. If, in addition,

lim infi→∞ δx,y(i) = 0 then Fx,y = χ(0,∞).

(b) If h(f) > 0, then there are x, y ∈ X and t ∈ R+ such that

χ(0,∞) = F ∗
x,y(t) > Fx,y(t).

The paper is organized as follows. Below we introduce additional basic notation
and definitions. Section 2 is devoted to prove useful technical results which are
used in the last section, where the main result is proved.

Recall that a point x ∈ X is periodic if f i(x) = x for some i ∈ N. Let Per(f)
denote the set of periodic points of f . For x ∈ X , let ω(x, f) denote the set of
limit points of the sequence (f i(x))∞i=0. ω(x, f) is called the omega limit set of f
at x. Let ω(f) =

⋃
x∈X ω(x, f) be the omega limit set of f .

Before proving our results, we need some information on n-star maps. The
components X\ {0} are called branches of X. We denote them by B1, B2, . . . , Bn.
Clearly, for 1 ≤ i ≤ n, the closure of Bi fulfills Bi = Bi∪{0}. For x ∈ X we denote
its modulus by |x|. For x, y ∈ Bi, 1 ≤ i ≤ n, |x| < |y|, we define the interval [x, y]
by [x, y] := {z ∈ Bi : |x| ≤ |z| ≤ |y|}. Similarly we define the intervals [x, y),
(x, y] and (x, y). If x, y ∈ Bi for some 1 ≤ i ≤ n and |x| < |y| (resp. |x| ≤ |y|),
we will write x < y (resp. x ≤ y). Notice that Bi is an interval for 1 ≤ i ≤ n.
Consider the following metric on X. For any x, y ∈ X, let d(x, y) = |x − y| if x
and y lie in the same branch and let d(x, y) = |x|+ |y| if x and y do not lie in the
same branch.

Finally, we recall the notion of horseshoe (see [16]). Let k ∈ N. We say that f
has a k-horseshoe if there is a closed interval J and k closed subintervals Ji ⊂ J ,
1 ≤ i ≤ k, with pairwise disjoint interiors and such that J ⊆ f(Ji) for 1 ≤ i ≤ k.

2. Preliminary results

We begin with the following lemma partially proved in [15]. For each x ∈ R,
[x] denotes the greatest integer such that [x] ≤ x. Lemma 3 can be found in [9].
Since it is an unpublished reference, we include the proof.

Lemma 3. Let (X, d) be a compact metric space and let f ∈ C(X). Fix k ∈ N

and x, y ∈ X . Then, Fx,y < F ∗
x,y = χ(0,∞) iff (F

k)x,y < (F k)∗x,y = χ(0,∞).

Proof: The sufficiency condition was proved in Lemma 3.3 from [15]. So, we
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must prove the necessity condition. To this end, fix t ∈ R+. Since

ξ(x, y, t, n, f) ≤
k−1∑

i=0

ξ(f i(x), f i(y), t, [n/k] + 1, fk),

it follows from the definitions that 1 ≤ 1
k

∑k−1
i=0 (F

k)∗
f i(x),f i(y)

(t). This gives us

(F k)∗
f i(x),f i(y)(t) = 1

for i = 0, 1, . . . , k − 1. On the other hand, assume that (F k)x,y(t) = 1 for all
t > 0. Since f is uniformly continuous, for any ε > 0 there is δ > 0 (δ ≤ ε) such

that d(x, y) < δ implies δi(x, y) < ε for 1 ≤ i < k. Then (F k)x,y(δ) = 1 implies

Fx,y(ε) = 1, which leads us to a contradiction. Thus (F
k)x,y < 1 and the proof

concludes. �

We start with the n-star case by formulating the following two results. Their
proofs are immediate.

Lemma 4. Let f ∈ C(X) and let [x, y] ⊂ Bi ⊂ X be an interval, 1 ≤ i ≤ n. If
f(x), f(y) ∈ Bi and either f(x) < x and y < f(y) or x < f(x) and f(y) < y, then
there is z ∈ [x, y] such that f(z) = z.

Lemma 5. Let f ∈ X0. Assume there is i ∈ {1, 2, . . . , n} such that z ≤ f(z) ∈ Bi

for all z ∈ Bi. Then there are at least two fixed points in Bi.

We assign a code to any x ∈ X as follows; let s(x) := (si)
∞
i=0 ∈ {0, 1, 2, . . . , n}N

be defined by si := j iff f i(x) ∈ Bj for some j ∈ {1, 2, . . . , n}, and si := 0 iff

f i(x) = 0. We say that s(x) is eventually constant if there is k ∈ N such that
si = sk for all i ≥ k; if k = 0 then we say that s(x) is constant . We say that
f ∈ X0 has property P if s(x) is a constant code for any x ∈ Per(f).

Lemma 6. Let f ∈ X0 have property P. Let x ∈ X be such that s(x) is not

eventually constant. Then limk→∞ fk(x) = 0, that is, ω(x, f) = {0}.

Proof: For 1 ≤ i ≤ n, let Ai := {j ∈ N : f j(x) ∈ Bi}. Notice that given
i ∈ {1, 2, . . . , n}, Ai can be finite or empty for some i.

Let k, l ∈ Ai, k < l, be such that fk+1(x) /∈ Bi. We claim that f l(x) < fk(x).
Assume the contrary and denote

A := {z ∈ Bi : z < fk(x) and f(z) ∈ Bi}

and
B := {z ∈ Bi : f

k(x) < z and f(z) ∈ Bi}.
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Since 0 ∈ A 6= ∅, let a := supA. It is clear that a < fk(x) and f(a) = 0. We

distinguish two cases: a 6= 0 and a = 0. First assume that a 6= 0. Since f l−k(a) =

0 < a and fk(x) < f l(x) = f l−k(fk(x)), by Lemma 4, there is z ∈ (a, fk(x))

such that f l−k(z) = z. Since f((a, fk(x))) ∩ Bi = ∅, f(z) /∈ Bi and this leads
us to a contradiction because z would be a periodic point with s(z) not constant.
Secondly, assume that a = 0. Again we distinguish two cases: B 6= ∅ and B = ∅.
If B 6= ∅ let b := inf B. Similarly to the previous case, fk(x) < b and f(b) = 0.

Since f l−k(b) = 0 < b and fk(x) < f l(x) = f l−k(fk(x)), again by Lemma 4,

there is z ∈ (fk(x), b) such that f l−k(z) = z, which also provides a contradiction.

Finally, assume B = ∅, which implies Per(f) ∩ Bi = ∅. If f l−k(y) < y for some

y ∈ Bi, we get again by Lemma 4 a fixed point z ∈ (y, fk(x)) or z ∈ (fk(x), y),

a contradiction. So y ≤ f l−k(y) for all y ∈ Bi. Now, by Lemma 5, there is z ∈ Bi

such that f l−k(z) = z, which again provides a contradiction.

Now, let i ∈ {1, 2, . . . , n} be such that Ai is infinite. Let (a
i
j)

∞
j=1 ⊂ Ai be such

that fai
j+1(x) /∈ Bi. Then (f

ai
j (x))∞j=1 is decreasing and therefore it converges.

Let yi = limj→∞ fai
j (x) (notice also that yi = limj∈Ai

j→∞

f j(x)). Clearly, ω(x, f) =

{yi : Ai is infinite}. Then ω(x, f) is a periodic orbit. Since f has no periodic
orbits contained in more than one branch, we conclude that ω(x, f) = {0}, which
completes the proof. �

Let f ∈ X0. Define fi : Bi → Bi, i ∈ {1, 2, . . . , n}, by

fi(x) =

{
f(x) if f(x) ∈ Bi;

0 if f(x) /∈ Bi.

Note fi is conjugate to an interval map p : [0, 1]→ [0, 1] such that p(0) = 0 (recall
that fi is conjugate to p if there is a homeomorphism φ : Bi → [0, 1] such that
p ◦ φ = φ ◦ fi). For i, j ∈ {1, 2, . . . , n}, i < j, define fi,j : Bi ∪ Bj → Bi ∪ Bj by

fi,j(x) =

{
fi(x) if x ∈ Bi;

fj(x) if x ∈ Bj .

Notice that fi,j is conjugate to an interval map g : [−1, 1]→ [−1, 1] with g(0) = 0.

Define f̃ ∈ X0 by f̃(x) = fi(x) if x ∈ Bi.

Lemma 7. Let f ∈ X0 have property P. Then for all j ∈ {1, 2, . . . , n}, ω(f) ∩
Bj = ω(fj). In particular, ω(f) =

⋃n
j=1 ω(fj).

Proof: Let y ∈ X. If s(y) is not eventually constant, then ω(y, f) = {0} and
there is nothing to prove. So, assume that s(y) is eventually constant, that is,
there are k ∈ N and j ∈ {1, 2, . . . , n} such that si = sk = j for any integer i ≥ k.
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Let yk := fk(y) ∈ Bj . Clearly (f
i(yk))

∞
i=0 ⊂ Bj and hence f i(yk) = f i

j(yk) for

all i ∈ N. Then ω(y, f) = ω(yk, f) = ω(yk, fj). �

Lemma 8. Let f ∈ X0 have property P. Let fi,j and fi be the maps defined

above. If h(f) = 0, then h(fi,j) = h(fi) = 0 for all i, j ∈ {1, 2, . . . , n}.

Proof: By [2, Chapter 4], it holds that h(fi,j) = max{h(fi), h(fj)} for all i, j ∈
{1, 2, . . . , n}. So, we must prove that h(fi) = 0 for all i ∈ {1, 2, . . . , n}. On the
other hand, it follows by [8, Corollary DG2] and Lemma 7 that

h(fi) = sup
x∈Bi

h(fi|ω(x,fi)) ≤ sup
x∈X

h(f |ω(x,f)) = h(f) = 0,

which completes the proof. �

3. Main result

Proof of Theorem 2. (a). Assume that h(f) = 0. Following the proof of

Theorem 1.5 from [4] we see that fN has property P for N = n!(n − 1)! . . . 2!.
Additionally, by [2, Chapter 4], h(fN ) = Nh(f) = 0. Due to Lemma 3, we can
assume without loss of generality that f has any periodic orbit contained in one
branch, that is, f has property P.
Now, fix x, y ∈ X, x 6= y. According to Lemmas 6 and 7, we distinguish

three cases: (a1) limn→∞ fn(x) = limn→∞ fn(y) = 0; (a2) limn→∞ fn(x) = 0
and there is an n0 ∈ N such that for all n ≥ n0, fn(y) ∈ Bi, i ∈ {1, 2, . . . , n};
(a3) there is an n0 ∈ N such that for all n ≥ n0, fn(y) ∈ Bi and fn(x) ∈ Bj

for some i, j ∈ {1, 2, . . . , n}. If (a1) happens, then clearly Fx,y = χ(0,∞). If (a3)

happens, then it is easy to check that Fx,y = Ffn0 (x),fn0 (y) = (Fi,j)fn0 (x),fn0 (y)

and F ∗
x,y = F ∗

fn0 (x),fn0 (y) = (Fi,j)
∗
fn0 (x),fn0 (y). This, together with Lemma 8

and Theorem 1, give us Fx,y = F ∗
x,y. So, assume that (a2) holds and fix ε > 0.

By Lemma 8, h(fi) = 0. Then by [17, Lemma 4.2], there is a periodic point of
fi, p ∈ Bi, such that Fy,p(t) = Ffn0 (y),p(t) > 1 − ε for t ≥ ε. On the other

hand, it is clear that F ∗
0,x(t) = F0,x(t) = 1 > 1 − ε. Then, following the proof of

Proposition 4.3 from [17], we see that Fx,y = F ∗
x,y.

Now assume that lim inf i→∞ δx,y(i) = 0 and let us prove Fx,y = χ(0,∞).

By Lemmas 6 and 7, we distinguish two possibilities: (p1) limn→∞ fn(x) =
limn→∞ fn(y) = 0; (p2) there is an n0 ∈ N such that for all n ≥ n0 fn(y) ∈ Bi,
and fn(x) ∈ Bi with i ∈ {1, 2, . . . , n}. If (p1) happens, then clearly Fx,y = χ(0,∞).

If (p2) happens, then notice that Fx,y = Ffn0 (x),fn0 (y) = (Fi)fn0 (x),fn0 (y) =

χ(0,∞) by Lemma 8 and Theorem 1.

(b). Now, assume that h(f) > 0. By [16], there is an l ∈ N such that f l has

a k-horseshoe. Since h(f l) = lh(f) > 0, by Lemma 3 we may assume that l = 1.
There is an invariant compact subset Y included in at most two branches such
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that f |Y is semiconjugate to a shift map defined on Σ = {(xn)
∞
n=1 : xn ∈ {0, 1}}

(see e.g. [7, Chapter 2]). Then, following [14] or [15], it is easy to see that f |Y is
distributionally chaotic. �

Corollary 9. Let f : X → X be such that 0 ∈ Per(f). Then f is distributionally
chaotic iff h(f) > 0.

Proof: Just apply Lemma 3 and Theorem 2. �
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