Previous |  Up |  Next

Article

Keywords:
calculus of variations; minimizers; regularity
Summary:
We prove that the higher integrability of the data $f, f_0$ improves on the integrability of minimizers $u$ of functionals $\Cal F$, whose model is $$ \int_{\Omega} \left[|Du|^p + (\operatorname{det} (Du))^2 - \langle f,Du \rangle + \langle f_0,u \rangle \right] dx, $$ where $u:\Omega\subset \Bbb R^n\to \Bbb R^n$ and $p\ge 2$.
References:
[1] Boccardo L., Giachetti D.: Alcune osservazioni sulla regolarità delle soluzioni di problemi fortemente non lineari e applicazioni. Ricerche Mat. XXXIV (1985), 309-323. MR 0870828
[2] Boccardo L., Schianchi R.: A remark on the $L^s$-regularity of the minima of functionals of the calculus of variations. Rev. Mat. Univ. Complut. Madrid 2 (1989), 113-118. MR 1012107
[3] Campanato S.: Sistemi ellittici in forma di divergenza. Quaderni Scuola Norm. Sup. Pisa, 1980. MR 0668196
[4] De Giorgi E.: Un esempio di estremali discontinue per un problema variazionale di tipo ellittico. Boll. Un. Mat. Ital. 4 (1968), 135-137. MR 0227827
[5] D'Ottavio A., Leonetti F., Musciano C.: Maximum principle for vector-valued mappings minimizing variational integrals. Atti Sem. Mat. Fis. Univ. Modena, suppl. vol. XLVI (1998), 677-683. MR 1645746 | Zbl 0913.35026
[6] Fusco N., Hutchinson J.: Partial regularity and everywhere continuity for a model problem from non-linear elasticity. J. Austral. Math. Soc. (Series A) 57 (1994), 158-169. MR 1288671
[7] Giachetti D., Porzio M.M.: Local regularity results for minima of functionals of the calculus of variations. Nonlinear Anal. TMA 39 (2000), 463-482. MR 1725398
[8] Giaquinta M.: Multiple integrals in the calculus of variations and nonlinear elliptic systems. Ann. of Math. Stud. 105, Princeton Univ. Press, 1983. MR 0717034 | Zbl 0516.49003
[9] Giusti E.: Metodi diretti nel calcolo delle variazioni. U.M.I., 1994. MR 1707291 | Zbl 0942.49002
[10] Kufner A., John O., Fučik S.: Function Spaces. Noordhoff International Publishing, Leyden, 1977. MR 0482102
[11] Leonetti F.: Maximum principle for vector-valued minimizers of some integral functionals. Boll. Un. Mat. Ital. 7 (1991), 51-56. MR 1101010 | Zbl 0729.49015
[12] Leonetti F.: Maximum principle for functionals depending on minors of the jacobian matrix of vector-valued mappings. Australian Nat. Univ., Centre for Math. Anal., Research Report 20, 1990.
[13] Nečas J., Stará J.: Principio di massimo per i sistemi ellittici quasi lineari non diagonali. Boll. Un. Mat. Ital. 6 (1972), 1-10. MR 0315281
[14] Stampacchia G.: Equations elliptiques du second ordre à coefficientes discontinus. Semin. de Math. Supérieures, Univ. de Montréal 16 (1966). MR 0251373
Partner of
EuDML logo