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Integrability for vector-valued
minimizers of some variational integrals

FRANCESCO LEONETTI, FRANCESCO SIEPE

Abstract. We prove that the higher integrability of the data f, fo improves on the inte-
grability of minimizers u of functionals F, whose model is

/ﬂ [|DulP + (det(Duw))? — (f, Du) + (fo, u)] de,

where u: Q C R®" — R™ and p > 2.
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1. Introduction

Let us consider the following elliptic boundary value problem

{ div (aDu) = div (f) in Q,

1.1
(1.1) u=20 on 012,

where u : 2 C R” — R and a = {a;j(x)} is an elliptic matrix with measurable and
bounded entries. In Stampacchia’s book [14, Chapter 4] we can find the following

regularity result for weak solutions u € Wol’2 (Q) of (1.1) with f € LI(2):

(12) { qg>n = u € L*°(Q),

2<g<n = ue LT ().

In (1.1) we have the boundary condition v = 0 and one single elliptic equation
div(aDu) = div(f). Let us consider the case of a system of N elliptic equations:

T

where v : @ € R” — RN and A = {A%ﬁ ()} is elliptic with measurable and
bounded entries. De Giorgi’s counterexample shows that regularity (1.2) does not
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hold true any longer [4], [8, Chapter 2, Section 3]. However, if the matrix A =
{A%ﬁ(:v, u)} is “diagonal” for large values of u, that is A%-ﬁ(ac, u) = ag;(x, u) 3P
for |u| > R, then (1.2) can be recovered ([13]). Solutions u € Wol’z(Q,RN) of
(1.3) are minimizers of the functional

(1.4) I(u)z/ﬂ(ADu,Du) d:v—/ﬂ(f,Du) dx

provided the matrix A = {A%ﬁ (x)} is symmetric. Viceversa, minimizers u €

W01’2(Q, RY) of (1.4) are solutions to the boundary value problem (1.3). In this
paper we consider more general functionals

(1.5) I(u):/ﬂG(x,u(x),Du(z)) dz—/Q(f,Du> dx

and we prove that the degree of integrability of f improves on the integrability
of u as in (1.2). Because of De Giorgi’s counterexample, we have to assume some
restrictions on G(z,u, Du). A simple model for our results is

(1.6) G(x,u, Du) = |DulP + | det(Du)|?,

where v : @ C R” — R™ and p > 2. The higher integrability of minimizers is
achieved by using test functions built by means of truncation of only one compo-
nent u” of our minimizer v = (u!,...,u™). The truncation argument has been
successfully employed in the scalar case u : Q@ — R ([14], [1], [2], [7]) and in
some special vector valued cases u : @ — R ([13]). The leading part |Du/P in
(1.6) is one of those special cases ([13]); the main feature of our model (1.6) is

the presence of | det (Du)|? and its good behaviour with respect to the truncation
argument (see [11], [12], [5], [6])-

2. Statements and preliminary results

In this section we introduce some notations and we state the result which will
be proved in the next section.

In the following 2 will always denote a bounded open subset of R™ (n > 2)
and c¢ a constant that may vary from line to line.

First of all, let us recall the definition of weak LP-spaces, or Marcinkiewicz
spaces (see [3, Chapter 1, Section 2], [9, Chapter 2, Section 5] or [10, Chapter 2,
Section 18]):

for p > 0 we will say that f € L,(Q) if and only if there exists a positive constant
k = k(f) such that
k
(2.1) Hee: [fl@)l >t} < 5
for every t > 0, where |E| is the n-dimensional Lebesgue measure of E C R"™. We
recall that if f € L%, for some p > 1, then f € L4 for every 1 < ¢ < p.
Later we will use the following result (see [3, Chapter 1, Lemma 2.1]).
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Lemma 2.1. Let p > 1. Then f € L%,(Q) if and only if for every measurable set
E C Q, the following inequality holds

-1
/ flde < BT
E

for some constant ¢ > 0.
We will also need the following technical result (see [14, Lemma 4.1]).

Lemma 2.2. Let sg > 0 and let 9 : (sg, +00) — [0, +00) be a decreasing func-
tion, such that for every h,k with h > k > sg

L (w(k)”,

1/’(h) < W

where ¢, «, 8 are positive constants. Then
(i) if B > 1 we have that ¢ (sg + d) = 0, where

4 = ¢ 2771 ((s0)) P

(if) if 8 <1 we have that

L 1

Y(h) <218 |cT-F + (2s50)"4(s0) | h7H,

where p = ﬁ

For u: Q € R™ — RY we write Du for the Jacobian matrix D{fu, a0 =1,...,N,
i=1,...,n, with N rows and n columns. We set nAN = min{n, N} and consider
the functional

J by
Fw) = [ Lu(), Du@)de+ Y. [ gs(1MsDu()]) da
(2.2) : s=1 78

n N N
- /Q > D [ @)Du (@) de + /Q aZ::l f8 (@)u® (@) da,

i=1a=1

where M;Du(z) is the vector containing all the s x s-minors taken from the N xn
matrix Du(z).
We assume that for every s = 1...,n AN, g5 : [0,+00) — R is increasing and
gs > 0.

For the leading part L of the functional (2.2) we assume that L : Q x RV x
RNX" _ R is measurable with respect to 2 € Q and continuous with respect to
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(u,€) € RV x RNX" with L > 0. Moreover, there exists sg > 0 and p € (1,n)
such that

N n P

(2.3) meo—Z(E:@wﬁﬁf it Jul > so.

a=1 " i,j=1

where the functions a7’ belong to L*°(Q) and satisfy the following ellipticity
condition

n
(2.4) > ag(@)ming > vin?
=1

for every n € R, for any o =1,..., N and for some v > 0.
Finally, for the linear part of (2.2) we will assume that

(2.5) fe P (QRN*™),
(2.6) foe L (Q,RY)
where ' = L5 and p* = nn—_’;).

Let us remark that assumptions (2.5)—(2.6) guarantee that (f, Dv) € L'(€) and
(fo,v) € LY(R), for every v € Wol’p(Q,RN).

A minimizer of functional (2.2) is a function u : @ — RY such that u €
Wy P(Q,RY), with z — L(z,u(z), Du(z)) € LY(Q) and gs(|MsDul) € L*(Q)
Vs=1,...,n AN and

(2.7) Flu) < Flv)  YoeW,P(QRY).
Let us write the components of f and fp in the way
f@) = (fY),...,fN=) with fz)eR"

and
folz) = (f&(:v), e ,fév(ac)) with f§'(z) € R.
Let us assume that there exists an index v € {1,..., N} and an exponent ¢ >
p = ]% such that
(2.8) e LL,(Q,RY),  ff € LE(Q),

where g, = nn——gq’ The main result of the paper is the following
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Theorem 2.3. Let u = (ul,...,uY) be a minimizer of functional (2.2), under
the previous assumptions. Then the component u” of our minimizer enjoys the
following regularity:

(1) q> = u’ e L®(Q);

(ii) q< — e L™(Q),

where m = [q(p — 1)]*.
Remark 2.1. The previous theorem still holds true when

P

(2.9) L(z,u,&) = ( Z Z x)& fj) for |u| > so,
a=11i,5=1

where af; € L°°($2) and satisfy (2.4), provided p > 2.

Example 2.1. For v : Q@ C R® — R", that is n = N, let us write u =
(ul,...,u™). A functional model for (2.2) is

n
:/ Z|Duo‘|pdw+/ | det (Du)2 da
Q= Q

—/Q<f,Du>dz+/Q(f0,u>d:c,

where 1 < p < n. The structure (2.3) is easily checked.
Example 2.2. For u: Q C R™ — R", a functional model for (2.9) is

u):/ |Du|pda:+/ | det (Du)|? da
Q Q

—/Q<f,Du>d:c+/Q<fo,u>da:,

(2.10)

(2.11)

where 2 < p < n.

3. Proof of Theorem 2.3
Let k > sg and define T}, : R — R such that
—k if s<—k,

Ti(s) =< s if —k<s<k,
k if k<s.
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For v as in our assumptions we consider v : Q — R defined as follows

Ti(u?) if a=r,

(3-1) vt = { u® if az#7.

Since u? € WP (), it follows that Tj,(u?) € WP () and
D(Tk(u")) = Du” X{jur|<k}>

where x g is the characteristic function of the set F, that is xg(x) = 1 if z belongs
to F, xg(z) = 0 if  does not belong to F. Thus

(3.2) Dv® = { DuY Xqur<ky  H a=7,

Du® if az#~.
Let ¢ = v — u; then ¢ € Wol’p(Q,]RN) and
DY = Dv" — Du” = —Du” X{[yr|>k}-

Thus, for almost every = € {|u”| < k} we have:

v(z) = u(),
Dv(z) = Du(x),

(3.3) MgDv(x) = MsDu(z) Vs=1,...,nAN,
L(z,v(z), Dv(x)) = L(z,u(z), Du(z)),
9s(|MsDv(z)|) = gs(|MsDu(x)]) Vs=1,...,nAN,

while for a.e. z € {|uY| > k} it is easy to see that:

|[MsDv(z)| < |[MsDu(x)] Vs=1,...,nAN,
(3.4) 0 < L(z,v(x), Dv(z)) < L(x,u(z), Du(z)),
0 < gs(|[MsDv(z)|) < gs(|[MsDu(x)|) Vs=1,...,nAN.

Hence z — L(x,v(z), Dv(z)) € LY(Q) and gs(|MsDv|) € LY(Q) for every s =
1,...,nAN.

We use (2.7) with v as before.
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We split Q into the two subsets {|u”?| > k} and {|u”| < k}; recalling (3.3) we
easily obtain

nAN

/ L(z,u, Du) dz + Z / gs(|[MsDu)) dx
{luY |2k} \W|>k}

‘/{|m|>k}22f Dju® d:v—l—/ qudac

{luY|Zk} o=
(3.5) a=11 lN =1
S/ L(z,v, Dv)dx + Z/ gs(|[MsDvl|) dx
{luY|=k} s=1 Y {lu7[=k}
_/ Zfo‘Dv d:z:—|—/ Zov dz.
{lwYZ2k} 027 121 {lur|zk} §
Because of (3.4), for every s =1,...,n A N we have

| stehdos [ gu(MDul)ds
{lu7|>k} {lu7|>k}

thus, the integrals containing MsDu and MgDv can be dropped in (3.5).
Using (3.1) and (3.2) we get

/ L(z,u, Du) dx —/ Z [ Dju? d:z:—l—/ fou? dx
{lur=k} {lw |2k} = {lu7| =k}

S/ L(a:,v,Dv)d:c—l—/ fo Ty (u”) d.
{lu7| =k} {lu7| =k}

Furthermore, since k > sq, in the set {|u”| > k} we get
L(z,u(x), Du(z))
n

> L(z,v(x), Dv(z)) + ( Z a;yj(;v)Diu“/(x)Dju’Y(:EQ
ij=1

Indeed, if L(x,u,&) has the structure described in (2.3), then (3.7) holds with

equality sign, while if L(z, u, ) is the one of (2.9), then to obtain (3.7) we use the

inequality (:C% + x%)g > :C‘;’ + xg , which holds true for every x1,x2 > 0, provided
p>2.
Hence by (3.6) and (3.7) we have

" :
Z al.Du'DiuY ) dx
urzep\ Sy 0

i,j=1

< / [ Dju” da +/ T (u?) — u?] da.
(lur |2k} = Z (lur|>ky °

(3.6)

(3.7)

(M)

(3.8)
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Now we use ellipticity condition (2.4) in (3.8) so that

(3.9) % / | DuY P dx < / Z [ Diu” da —I—/ foe" da,
{lu7| =k} {lw|=2k} =7 {lu?| =k}

where we recall that ¢ = v — u.
We observe that for almost every x € {|u”| = k} we have Du7(z) = 0 and 97 = 0.
Then by applying Holder inequality to the right hand side of (3.9) we have

(3.10)

1
yg/ |Du7|pdx§(/ |Du7|pdx)p(/ |f’¥|p dw)
{Juw|>k} {Ju|>k} {luw|>k}
1 _1
+(/ |(p'y|p* dw)? (/ |f(,)y|(p*)/ dl‘) (p*) '
{lur[>k} {lw[>k}

Now we use Sobolev inequality for the function ¢7 in ) and we note that Dyp7 =
—Du" in {|u7| > k}, while DY = 0 in {|u?| < k}, so that by (3.10) we easily get

1
I’y

1 1
/

V§</ |D u7|pda:> < </ |f’7|p/d:1:>p
{lu7[>k} {lur|>k}

1

+c(/ |f8/|(p*)/ dw) (»*) ,

{luY|>k}
where ¢ = ¢(n,p). We observe also that, again by Sobolev inequality
/ |DuY P dx = / | D" P dx = / | D" P dx
{luY[>k} {lu[>k} Q

» »
>c</ | |P" dx) —c(/ (JuY] = k)P d:v)p ,
{lur|>k}

with ¢ = ¢(n,p). Then (3.11) leads to

L
/ (7] = B do < c[(/ Tald d:c) ’
{lur|>k) {lur>k}

(3.12) -

-1
(87 ]
o[>k}

(3.11)

where ¢ = ¢(n, p, v).
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By the weak integrability assumptions (2.8) and by (2.1), we deduce that

’ 1 Is Y
e PP >0} =|zen: ] > o7} < 2
o?
and ”
*\/ 1
fren: IFIF) >0} = [z s 7] > T < 2],
U(P*),
Then, by applying Lemma 2.1 to f7 and fg we obtain that
i * /
/ p p*(g—p")
(3.13) (/ |f7P d:c) <cal{lu| >k} e,
{lw[>k}
where ¢1 = ¢1(f7,n,p,q,Q) and
pF—1
Y p—1 (p* =) (gx— ("))
N O N L BT R
{lw7[>k}

where 2 = C2(f37nap7 q, Q)
It is easy to see that the exponents at the right hand side of (3.13) and (3.14)
coincide; we set

* _
(3.15) B = pa—p) :
rq
so that, by (3.12) we obtain
(3.16) /{| oy (871 R e < 7> )
u

where ¢ = ¢(n, p,q,v, [7, fg, Q).
Since for every h > k the inclusion {|u”| > h} C {|u”| > k} holds true, we
have

/ (] — K" da z/ (0] = K" da > (h— K7 [{Ju?] > B}
{lu|>k} {|uY|>h}

Thus (3.16) becomes

&
< [{lw| > kY7,

(3.17) {u?] > h}| < h—kpP
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where h > k > sg > 0.
We use Lemma 2.2 with ¢(h) = [{|u”| > h}| and o = p* and we see that

Bg>1 = q>

50, in this case, (3.17) and (i) of Lemma 2.2 guarantee that there exists a positive
constant ¢ such that

[z < c.

On the other hand n

p—1

08<1 — q<

and then, by (ii) of Lemma 2.2 we obtain a positive constant ¢ such that

c
,
7] > BH < 15

8]

where p = 125 = [¢(p — 1)]*. This concludes the proof of Theorem 2.3. O
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