Previous |  Up |  Next

Article

Keywords:
groupoid; subdirect irreducibility
Summary:
A groupoid $H$ is a homomorphic image of a subdirectly irreducible groupoid $G$ (over its monolith) if and only if $H$ has a smallest ideal.
References:
[1] Ježek J., Kepka T.: Ideal-free CIM-groupoids and open convex sets. Lecture Notes in Math. 1004 166-175 Springer Verlag (1983). MR 0716182
[2] Kepka T.: On a class of subdirectly irreducible groupoids. Acta Univ. Carolinae Math. Phys. (1981), 22.1 17-24. MR 0635973 | Zbl 0478.08005
[3] Kepka T.: A note on subdirectly irreducible groupoids. Acta Univ. Carolinae Math. Phys. (1981), 22.1 25-28. MR 0635974 | Zbl 0481.08001
[4] Kepka T.: On a class of groupoids. Acta Univ. Carolinae Math. Phys. (1981), 22.1 29-49. MR 0635975 | Zbl 0481.08002
Partner of
EuDML logo