Article
Keywords:
Hedetniemi's conjecture; (fractional) chromatic number
Summary:
One consequence of Hedetniemi's conjecture on the chromatic number of the product of graphs is that the bound $\chi(G \times H) \geq \min \{ \chi_f(G), \chi_f(H) \}$ should always hold. We prove that $\chi(G \times H) \geq \frac{1}{2} \min \{ \chi_f(G), \chi_f(H) \}$.
References:
[1] El-Zahar M., Sauer N.:
The chromatic number of the product of two $4$-chromatic graphs is $4$. Combinatorica 5 (1985), 121-126.
MR 0815577 |
Zbl 0575.05028
[2] Hedetniemi S.H.: Homomorphisms of graphs and automata. University of Michigan Technical Report 03105-44-T, 1966.
[3] Poljak S.:
Coloring digraphs by iterated antichains. Comment. Math. Univ. Carolinae 32 (1991), 209-212.
MR 1137780 |
Zbl 0758.05053
[4] Poljak S., Rödl V.:
On the arc-chromatic number of a digraph. J. Combin. Theory Ser. B 31 (1981), 339-350.
MR 0630982
[5] Scheinerman E.R., Ullman D.H.:
Fractional Graph Theory. Wiley-Interscience Series in Discrete Mathematics and Optimization, John Wiley & Sons, New York, 1997, xviii+211 pp.
MR 1481157 |
Zbl 0891.05003