[1] Baston R.J.:
Almost Hermitian symmetric manifolds, I: Local twistor theory, II: Differential invariants. Duke Math. J. 63 (1991), 81-111, 113-138.
MR 1106939
[2] Baston R.J., Eastwood M.G.:
Penrose Transform; Its Interaction with Representation Theory. Clarendon Press, Oxford, 1989.
MR 1038279 |
Zbl 0726.58004
[3] Bernstein I.N., Gelfand I.M., Gelfand S.I.:
Structure of representations generated vectors of highest weight. Funct. Anal. Appl. 5 (1971), 1-8.
MR 0291204
[4] Bernstein I.N., Gelfand I.M., Gelfand S.I.:
Differential operators on the base affine space and a study of $\frak g$-modules. in ``Lie Groups and their Representations'' (ed. I.M. Gelfand) Adam Hilger, 1975, pp.21-64.
MR 0578996
[5] Branson T., Ólafsson G., Ørsted B.:
Spectrum generating operators and intertwining operators for representations induced from a maximal parabolic subgroup. J. Funct. Anal. 135 (1996), 163-205.
MR 1367629
[6] Bureš J.:
Special invariant operators I. Comment. Math. Univ. Carolinae 37.1 (1996), 179-198.
MR 1396170
[7] Čap A.:
Translation of natural operators on manifolds with AHS-structures. Archivum Math. (Brno) 32.4 (1996), 249-266, electronically available at www.emis.de.
MR 1441397
[8] Čap A., Schichl H.:
Parabolic Geometries and Canonical Cartan Connections. preprint ESI 450, electronically available at www.esi.ac.at.
MR 1795487
[9] Čap A., Slovák J., Souček V.:
Invariant operators on manifolds with almost Hermitian symmetric structures, I. Invariant differentiation. Acta Math. Univ. Commenianae 66 (1997), 33-69, electronically available at www.emis.de.
MR 1474550
[10] Čap A., Slovák J., Souček V.:
Invariant operators on manifolds with almost Hermitian symmetric structures, II. Normal Cartan connections, Acta Math. Univ. Commenianae. 66 (1997), 203-220, electronically available at www.emis.de.
MR 1620484
[11] Čap, A., Slovák J., Souček V.:
Invariant operators on manifolds with almost Hermitian symmetric structures, III. Standard Operators. ESI Preprint 613, to appear in J. Differential Geom. Appl., electronically available at www.esi.ac.at.
MR 1757020 |
Zbl 0969.53004
[12] Eastwood M.G.: On the weights of conformally invariant operators. Twistor Newsl. 24 (1987), 20-23.
[13] Eastwood M.G., Slovák J.:
Semi-holonomic Verma modules. J. Algebra 197 (1997), 424-448.
MR 1483772
[14] Fegan H.D.:
Conformally invariant first order differential operators. Quart. J. Math. 27 (1976), 371-378.
MR 0482879 |
Zbl 0334.58016
[15] Fulton W., Harris J.:
Representation Theory - A First Course. Springer-Verlag (GTM), 1991.
MR 1153249 |
Zbl 0744.22001
[16] Garland H., Lepowsky J.:
Lie Algebra Homology and the Macdonald-Kac Formulae. Inv. Math. 34, Springer, 1976.
MR 0414645
[17] Gindikin S.G.:
Generalized conformal structures. Twistors in Mathematics and Physics, LMS Lecture Notes 156, Cambridge Univ. Press, 1990, pp.36-52.
MR 1089908 |
Zbl 0788.22008
[18] Goncharov A.B.:
Generalized conformal structures on manifolds. Selecta Math. Soviet. 6 (1987), 308-340.
MR 0925263 |
Zbl 0632.53038
[19] Humphreys J.E.:
Introduction to Lie Algebras and Representation Theory. Springer-Verlag, 1972.
MR 0323842 |
Zbl 0447.17002
[20] Jakobsen H.P.:
Conformal invariants. Publ. RIMS, Kyoto Univ. 22 (1986), 345-361.
MR 0849262
[23] Kobayashi S., Nagano T.:
On filtered Lie algebras and geometric structures I. J. Math. Mech. 13 (1964), 875-907.
MR 0168704 |
Zbl 0142.19504
[24] Kolář I., Michor P.W., Slovák J.:
Natural Operations in Differential Geometry. Springer, 1993.
MR 1202431
[25] Lepowsky J.:
A generalization of the Bernstein-Gelfand-Gelfand resolution. J. Algebra 49 (1977), 496-511.
MR 0476813 |
Zbl 0381.17006
[26] Sharpe R.W.:
Differential Geometry. Graduate Texts in Mathematics 166, Springer-Verlag, 1997.
MR 1453120 |
Zbl 0876.53001
[27] Slovák J.:
On the geometry of almost Hermitian symmetric structures. in Proceedings of the Conference Differential Geometry and Applications, 1995, Brno, Masaryk University, Brno (1996), pp.191-206, electronically available at www.emis.de.
MR 1406338
[28] Slovák J.: Parabolic geometries. Research Lecture Notes, Part of DrSc. Dissertation, Preprint IGA 11/97, electronically available at www.maths.adelaide.edu.au.
[29] Verma D.N.:
Structure of certain induced representations of complex semisimple Lie algebras. Bull. Amer. Math. Soc. 74 (1968), 160-166.
MR 0218417 |
Zbl 0157.07604
[30] Wünsch V.:
On conformally invariant differential operators. Math. Nachr. 129 (1986), 269-281.
MR 0864639