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Construction of BGG sequences for AHS structures

Lukáš Krump

Abstract. This paper gives a description of a method of direct construction of the BGG
sequences of invariant operators on manifolds with AHS structures on the base of rep-
resentation theoretical data of the Lie algebra defining the AHS structure. Several
examples of the method are shown.

Keywords: Hermitian symmetric spaces, standard operators, BGG sequence, Hasse di-
agram, weight graph

Classification: 22E46, 43A85, 53A55, 53C30

1. Introduction

Invariant operators on manifolds have been studied recently by many authors.
The basic and best understood case is that of conformally invariant operators,
studied by Baston, Branson, Eastwood, Fegan, Jakobsen, Slovák, Wünsch (see
[2], [5], [12], [13], [14], [20], [30]) and others. A broader concept of so-called AHS
structures generalizing the conformal structure was introduced and studied by
Baston, Gindikin, Goncharov, Čap, Slovák, Souček and others (see [1], [17], [18],
[9], [10], [11]).
It turned out that there exists a class of so-called standard operators for AHS

structures on a manifold that can be described in a constructive way. This con-
struction is described in [11]. A natural question is a systematization of standard
operators. It is known (see e.g. [1]) that one can consider sequences of operators
called BGG (Bernstein-Gelfand-Gelfand) sequences. These sequences are studied
by many authors (originally [3], [29]) and it turns out that they contain a lot of
information. A standard way of computing a BGG sequence uses iterated action
of the Weyl group. The present paper shows basic ideas of constructing the BGG
sequence all at once, directly from the so-called weight graph of the positive part
g1 of the |1|-grading. This gives in fact no new information about particular
sequences that are known, but it rather shows a surprising connection between
complexes of operators (which is a geometrical notion) and purely representation
theoretical properties of certain Lie algebra.
For technical reasons, the method is developed for the cases of AHS structures

for which all the weights of g1 are extremal. This excludes the odd conformal and
symplectic structures, where certain technical modifications are necessary.
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1.1 Definitions. Consider a complex simple Lie group G with a Lie algebra g

which is |1|-graded, i.e.
g = g−1 ⊕ g0 ⊕ g1

with [gi, gj ] ⊂ gi+j . There is a parabolic subgroup P of G corresponding to the
algebra p = g0 ⊕ g1 (see e.g. [23]).
Throughout this paper, we consider always complex Lie algebras. In the real

case, more complicated structures occur that should be dealt separately. A |1|-
graded Lie algebra has several important properties, especially:

(1) g0 = gs
0⊕CE, where gs

0 is semisimple and CE is a one-dimensional center
generated by an element E characterized by the property that it acts on
every gi by the multiplication by i,

(2) g±1 are mutually dual irreducible representations of g0.

If V is an irreducible representation of g0, its highest weight will be denoted
(λ,w) where λ is the highest weight of V as a representation of gs

0 and the eigen-
value w ∈ C of the action of E on V is the so-called generalized conformal
weight. Then write V = V (λ,w).
An AHS (almost Hermitian symmetric) structure on a manifold M is

given by a principal bundle G on M with structure group P together with a
normal Cartan connection ω on G.
In [11], a construction of a broad class of invariant differential operators

D : Γ(M,V(λ,w))→ Γ(M,V(λ′, w′))

on a manifoldM with AHS-structure is described. More precisely, let Γ(M,V(λ,w))
denote the space of sections of the associated bundle V(λ,w) = G ×P V (λ,w);
then it is shown that if λ and λ′ = λ + kβ are dominant weights for gs

0, where k
(the order of the operator) is a positive integer and β is a weight of the represen-
tation g1 of g

s
0, then there exists a value w (see Theorem 2.4) of the generalized

conformal weight such that there exists a so-called standard invariant operator
D : Γ(M,V(λ,w))→ Γ(M,V(λ′, w′)), w′ = w+ k. These operators correspond to

projections π : ⊗kg1 ⊗ Vλ → Vλ′ .
This construction is independent of the manifold M and what really matters

in the classification of operators are the representation spaces V (λ,w). That is
why we only write arrows

D : (λ,w)→ (λ′, w′)

to denote standard operators. If λ′ = λ + kβ, w′ = w + k, denote this arrow
D = D(β, k) = D(β, k, λ).
For a given Lie algebra g, consider the set of all invariant differential operators

— in our notation

{D(β, k, λ) : (λ,w)→ (λ + kβ,w + k);

β is a weight of g1, k ∈ N,

λ, λ+ kβ are dominant weights for gs
0}.
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This set may be considered as a graph whose vertices are couples (λ,w) and
arrows are operators D(β, k, λ). It is known (see [1]) and will be shown here
again that this graph decomposes into connected components, the most of which,
so called regular ones, have the same underlying graph structure, which will be
called the Hasse diagram. These components are called BGG sequences and
every one is characterized by the weight λ0 of the initial vertex (λ0, w0) and the
order k0 of the initial operator (see Theorem 3.11). The singular components are
not considered in this paper.
The main aim of the paper is to use the information contained in the weight

structure of g1 for definition of Hasse diagram and to show that the BGG se-
quences are isomorphic graphs (“have the same shape”) to the Hasse diagram.

2. Computations

Let g be a |1|-graded Lie algebra with the property that all weights of g1 are
extremal. It follows from the classification of |1|-graded Lie algebras that then all
roots of g are of the type ei ± ej and thus have the same length.

2.1 Inner products. Denote by h the Cartan subalgebra of g, by h∗ its dual.
For g |1|-graded, denote by h0 the Cartan subalgebra of gs

0, then obviously h0 ⊂ h

and it has codimension one in h. We define an inclusion of dual spaces h0∗ ⊂ h∗

by the condition λ ∈ h0∗ 7→ λ̃ ∈ h∗, where λ̃ = λ on h0∗ and 0 on CE.
All invariant inner products on a Lie algebra are multiples of the Killing form

B(., .). We introduce two new invariant inner products on g. The first one will
be denoted by (., .) and it is defined so that (E,E) = 1. More exactly,

(X,Y ) =
B(X,Y )

B(E,E)

for all X,Y ∈ g. This definition restricts onto h and it defines an inner product
on the dual space h∗, where we have dually

(α, β) = B(E,E)B(α, β)

for all α, β ∈ h∗. This inner product is then defined on h0∗ by restriction and is
also denoted here by (., .).
The norm on h∗ and also on h0∗ will be denoted

|α|2 = (α, α).

The other inner product on g will be denoted by 〈., .〉 and it is defined by the
condition that, for the dual product on h∗, all roots in this product have length 2.
It is known that then for every root α and every weight β, the product 〈α, β〉 is
an integer.
We have

(X,Y ) =
〈X,Y 〉

〈E,E〉
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for all X,Y ∈ g and
(α, β) = 〈E,E〉〈α, β〉

for all α, β ∈ h∗.
From now on, a weight will mean a weight from the weight lattice for gs

0, if not
specified otherwise.

Definition 2.1. For a fixed representation V of gs
0 and for any its weight β,

define the number

rβ =
|β|2 + 1

2
.

If all weights of V are extremal (have the same length), then denote by r = rV
the common value of rβ .

Lemma 2.2. Let g be |1|-graded, suppose that all weights of the representation
g1 of gs

0 are extremal. Then r = rg1 = 〈E,E〉 and therefore (., .) = r〈., .〉 on h∗.

Proof: It is known (see e.g. [23]) that if θ is the highest root of g, then θ(E) = 1
and the highest weight β = βmax of g1 is equal to the orthogonal projection of θ
to h0∗. Denote γ = θ − β. Since γ is orthogonal to β, we have |θ|2 = |β|2 + |γ|2.
θ is a root, hence 〈θ, θ〉 = 2. Therefore

2〈E,E〉 = |β|2 + |γ|2.

Now it is enough to show that |γ|2 = 1. We know that γ is perpendicular
to h0∗, E is perpendicular to h0 (all with respect to the Killing form) and that
γ(E) = θ(E) = 1, i.e. γ and E are dual elements of dual bases of h∗ and h,
respectively. Therefore (γ, γ) = B(γ, γ)B(E,E) = 1. �

This will allow us to use both inner products (., .) (that appears naturally in
the value of the conformal weight) and 〈., .〉 (whose advantage is that it gives
integral results for a root and a weight).

Notation 2.3. The weight δ is defined as half the sum of all positive roots, it
equals also to the sum of the fundamental weights. Therefore if αi is a simple

root, then 〈δ, αi〉 = 1.

The following theorem is the Corollary 5.3 of [11].

Theorem 2.4. Let Vλ be an irreducible representation of gs
0 and let βmax be

the highest weight of the representation g1. Suppose that an extremal weight β

of g1 and a positive integer is chosen in such a way that λ+ kβ is dominant. Let
π : ⊗kg1 ⊗ Vλ → Vλ′ be the projection onto the unique irreducible component of

the product with highest weight λ′.

Then there is a unique value for the generalized conformal weight w such that

π defines an invariant operator D(β, k) : (λ,w) → (λ′, w + k). The value of the
generalized conformal weight is given by

w = wλ,β − kr,
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where

(2.1) wλ,β = (βmax, δ)− (λ+ δ, β) + r.

From now on, we extend the notation — for any weights λ, λ′ (i.e. not only for
dominant ones) write D(β, k) : (λ,w)→ (λ′, w+ k) if λ′ = λ+ kβ, w = wλ,β − kr

and w′ = w + k.
We prove now two auxiliary lemmas that will be used later in the proof of

Theorem 3.11.

Lemma 2.5. If β1 ≤ β2, then wλ,β1 ≥ wλ,β2 for any weight λ.

Proof: It follows directly from the formula (2.1). �

Lemma 2.6. If (λ1, w1)
β1,k1

−−−→ (λ2, w2), then w2 = wλ2,β1 + k
1r.

Proof:

w2 = w1 + k1 = (βmax, δ)− (λ
1 + δ, β1) + r − k1r + k1 =

= (βmax, δ)− (λ
2 + δ, β1) + r + k1(1 − r + (β1, β1)) =

= wλ2,β1 + k
1r,

since 1− r + (β1, β1) = r. �

Let us look for the conditions saying when two operators can be composed.
Suppose that there are two operators, the image space of the first one being the
source space of the second one (with λi not necessarily dominant):

(2.2) (λ1, w1)
D(β1,k1,λ1)
−−−−−−−−→ (λ2, w2)

D(β2,k2,λ2)
−−−−−−−−→ (λ3, w3).

Lemma 2.7. Two operators can be composed as in the situation (2.2) if and
only if

(2.3) (λ2 + δ, β1 − β2) = (k1 + k2)r.

Proof: We know by Theorem 2.4:

w1 = wλ1,β1 − k1r,

λ2 = λ1 + k1β1

and
w2 = wλ2,β2 − k2r.

The two operators can be composed if and only if

(2.4) w2 = w1 + k1.

Compute

wλ1,β1 − k1r + k1 = wλ2,β2 − k2r

(λ2 − k1β1 + δ, β1) + k1(r − 1) = (λ2 + δ, β2) + k2r

(λ2 + δ, β1 − β2) = −k1(r − 1− (β1, β1)) + k2r.

But r − 1− (β1, β1) = −r and so we have proved the lemma. �
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Remark 2.8. We in fact proved the equivalence between the equalities 2.4 and
2.3 without the assumption that any of λi is dominant (i.e. that any of these ar-
rows really defines an operator). This will be needed in the proof of Theorem 3.11
when the dominance of λ3 will be to be proved.

Corollary 2.9. A version of the formula (2.3) from the preceding lemma ex-
pressed using the inner product 〈., .〉:

(2.5) 〈λ2 + δ, β1 − β2〉 = k1 + k2.

Definition 2.10. Define the relation ≤ on the weight lattice. If β1, β2 are two
weights, write β1 ≤ β2 if and only if there exists an element of the positive root

lattice α such that β1 + α = β2. This defines the standard (partial) ordering of
the weight lattice.

Weights β1, β2 are incomparable if neither β1 ≤ β2 nor β2 ≤ β1, then denote

β1 6≃ β2.

Corollary 2.11. If two operators are composed as in the situation (2.2), then
β2 ≤ β1 or β

1 6≃ β2.

Proof: For β1 ≤ β2 is (λ
2 + δ, β1 − β2) ≤ 0 since λ + δ is a dominant weight,

but k1, k2, r are all positive. �

Corollary 2.11 implies that in the situation (2.2), the element α = β1 − β2 of
the root lattice is not negative (it may be positive or a combination of positive
and negative simple roots). This is an important property that gives arise to the
following method giving the general rule of constructing BGG sequences directly
from the information contained in the weight graph of the representation g1.

3. Construction of the BGG sequence

3.1 Weight graphs and Hasse diagrams.

Definition 3.1. If B is a set, then a graph with B-labeled arrows or a
graph labeled by B or just a B-graph is a finite oriented graph G = (V,A)
with no cycles. Equivalently, it is a set of vertices V such that the set of all arrows

A ⊂ V × V , if we denote u ≥ v ⇐⇒ u → v, generates a partial ordering on V .

Moreover, there is a mapping ψ : A −→ B.

If u, v ∈ V, a = (u, v) ∈ A and ψ(a) = b ∈ B, then write u
b

−→ v.

If the set B is known, we often call a B-graph simply a graph.

Definition 3.2. Let g be a semisimple Lie algebra and ρ its irreducible repre-

sentation with highest weight βmax. The weight graph of the representation ρ
is the following graph W labeled by the set of simple roots of g:

• the set of vertices is the set of all weights of ρ,
• there is an arrow β1 → β2 labeled by αi if and only if there exists a simple

root αi of gs
0 such that β2 = β1 − αi.
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The partial ordering generated in the weight graph corresponds to the standard
ordering of the weight lattice, and the highest weight is its greatest element.
The weight graph of a given representation ρ corresponds to the usual construc-

tion of the weights of the representation when the highest weight βmax is known.

If β is a weight, find all simple roots αi such that the integer m = 2
(β,αi)
(αi,αi)

is

positive. Then for every k = 1, . . . ,m, the element βk = β − kαi is also a weight
of ρ and there is an arrow from βk−1 to βk labeled by αi and there is always
(βk−1, αi)− (βk, αi) = (αi, αi). Doing the same for all weights that occur we get
the whole weight graph.
If all weights of the representation are extremal, then the numberm, if positive,

may take only the value 1.

Definition 3.3. A subgraph V of the weight graph W of a representation ρ is

called acceptable if the following condition is satisfied: whenever γ is a vertex
of V then every vertex β, such that there exists an arrow that starts in β and

ends in γ, is also contained in V .

Equivalently, an acceptable subgraph regarded as a partially ordered set con-

tains with every γ all elements β such that β > γ.

For this definition, see also [22].
Definition 3.4. LetW be a weight graph of a representation ρ of a Lie algebra g.

Then the Hasse diagram for ρ is a graph labeled by the vertices of the weight
graph, defined by:

• vertices are acceptable subgraphs of W ,
• if U 6= V are acceptable subgraphs of W and β ∈ V such that U∪{β} = V

then there is an arrow d(β) : U
β

−→ V .

The Hasse diagram is obviously a well-defined graph — it is in fact a partially
ordered set of (some) subsets of W .

Lemma 3.5. The definition of the Hasse diagram implies the following fact: if U
is an acceptable subgraph, then the arrows d(β) ending at U correspond exactly
to the minimal elements β of U and the arrows d(γ) starting at U correspond
exactly to the maximal elements γ of W − U .

Proof: The statements follow directly from the definition of the Hasse diagram.
�

Definition 3.6. We say that a graph F labeled with a set B has the square

completing property if whenever
v0'*b1
hj

b2

v1 v2
is a subgraph of F then there

exists a vertex v3 such that

v0'*b1
hj

b2

v1hj
b2

v2'*b1

v3

is also a subgraph of F . We say that
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F has the dual square completing property if whenever
v1hj

b2
v2'*b1

v3
is a

subgraph of F then there exists a vertex v0 such that

v0'*b1
hj

b2

v1hj
b2

v2'*b1

v3

is a subgraph

of F .

Remark 3.7. For any given g and its representation ρ, both the weight graph

and the Hasse diagram have the square completing property and dual square

completing property.

Definition 3.8. Isomorphism of B-labeled graphs G, H is a mapping ϕ :
G → H which is a one-to-one mapping of both vertices and arrows with the

condition that if g
b
−→ g′, b ∈ B, then ϕ(g)

b
−→ ϕ(g′).

3.2 Construction of the BGG sequence. The idea of construction of the
BGG sequence deals with the weight graph W of the representation g1 of gs

0.
Before we state the main theorem, let us prove an important technical lemma
about properties of W . Recall that we restrict ourselves to the case that all
weights of g1 are extremal.

Lemma 3.9. If
β0hhhkα1 4446α2

β1 β2

is a subgraph of W with α1, α2 simple, then 〈α1, α2〉 = 0 and 〈βi, αj〉 = −1 if
i = j and 1 if i 6= j.

Proof: Recall that every weight β of g1 is an orthogonal projection of a root θ
of g onto h0∗ (see Lemma 2.2, and [23]). Therefore

〈β0, αi〉 = 〈θ0, αi〉

for every simple root αi. By assumption, 〈β
0, αi〉 = 1 for i = 1, 2, hence θ

0, α1, α2
are three linearly independent roots of g (α1, α2 are independent in h0∗ and θ0 is
not in h0∗).
But we know that all roots of g have the same length and the only possible val-

ues of the inner product 〈α1, α2〉 are 0,−1 (this follows from the Dynkin diagram
of g). If 〈α1, α2〉 = −1, then necessarily θ0 = α1 + α2 which is a contradiction
with the linear independence of these three roots.
The relation 〈β1 α1〉 = 〈β2, α2〉 = −1 follows from the definition of the weight

graph and 〈β1 α2〉 = 〈β2, α1〉 = 1 is obtained by

〈β1, α2〉 = 〈β0, α2〉 − 〈α1, α2〉 = 1

and vice versa. �
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Corollary 3.10. Suppose that βi = β0 − αi are two incomparable weights, i =
1, 2, and α1, α2 are positive roots such that each of them, expressed as a linear
combination of simple roots, has the least possible number of summands. In

other words, β0 is the supremum of β1, β2, i.e. the least weight greater than

both β1, β2. Then also 〈α1, α2〉 = 0 and 〈βi, αj〉 = −1 if i = j and 1 if i 6= j.

Proof: This follows by applying the preceding lemma to the summands of α1, α2.
�

Recall that a BGG sequence B is defined as a connected component of the
graph of all invariant operators. Call B′ the underlying graph of B, i.e. the W -
labeled graph obtained by forgetting the orders of operators and keeping just the
directions β ∈W .

Theorem 3.11. Let g be a |1|-graded Lie algebra, suppose that all weights of g1
are extremal and denote its highest weight βmax. Let λ

0 be a dominant weight

for gs
0 and let k

0 ∈ N. Let w0 = −(λ, βmax) + (1− k0)r. Denote by B the BGG

sequence containing the subgraph D(βmax, k
0) : (λ0, w0) −→ (λ0+ k0βmax, w

0+
k0) and by B′ the underlying W -labeled graph. Denote by W the weight graph

and by H the Hasse diagram for the representation g1.

Then there exists a unique W -graph isomorphism ϕ : H → B′ such that

ϕ(∅) = (λ0, w0).

Remark 3.12. The value of w0 is defined as wλ0,βmax
− k0r, which assures, by

Theorem 2.4, the existence of an operator D(βmax, k
0, λ0).

Proof: For l ∈ Z+ denote by Hl the full subgraph of H containing all the
acceptable subgraphs of W the cardinality of which is at most l.
The mapping ϕ will be constructed by induction on the cardinality l of accept-

able subgraphs U . On every step, the image of Hl under ϕ will be denoted Bl

and it will be proved that

(a) ϕ|Hl
: Hl → Bl is a W -graph isomorphism,

(b) all arrows leaving the vertices of Bl−1 are images of arrows leaving the
vertices of Hl−1 under ϕ and

(c) all arrows entering the vertices of Bl are images of arrows entering the
vertices of Hl under ϕ.

(I.) First induction step (l = 0). Put ϕ(∅) = (λ0, w0). Then (a) is obvious, (b)
is void and we only have to prove (c): the set of arrows of B ending at (λ0, w0)
is the same as the set of arrows of H ending at ∅, which is empty.
This is straightforward: if there is an arrow labeled β entering the vertex

(λ0, w0), so necessarily β ≤ βmax, and this is a contradiction with Corollary 2.11.

(II.) Second induction step. Suppose that ϕ is constructed for all U ∈ Hl,
l ≥ 0. We know by induction that (a), (b), (c) hold and also that for every such
U , the component λU of ϕ(U) = (λU , wU ) is a dominant weight.
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Let an acceptable subgraph V ∈ Hl+1 be fixed. Choose U ∈ Hl and β ∈ W

such that V = U ∪ {β}. Define

k = kβ =
1

r
(wλU ,β − wU ),

λV = λU + kβ,

wV = wU + k,

ϕ(V ) = (λV , wV ).

Define also the image of the arrow U
β
−→ V by ϕ(U)

β
−→ ϕ(V ).

We must prove that ϕ(V ) is well defined, i.e. that k is a positive integer, λV is
dominant and the value of ϕ(V ) does not depend on the choice of U , β.
This will be proved separately in two cases:

Case 1. There exists only one pair U, β2 such that V = U ∪ {β2}, i.e. β2 is the
only minimal element of V (“no branching”).

Case 2. There are more such pairs (“branching”).

1. First consider the “no branching” case.

In the subcase l+1 = 1 the only acceptable subgraph of cardinality 1 is {βmax},
and we have already k0 ∈ N given and it is obvious that λ{β} = λ0 + k0βmax is

dominant, since both λ0 and βmax are.
If l + 1 ≥ 2, then there exists β1 minimal in U such that αi = β1 − β2 is a

simple root (there may exist more such weights β1). Then necessarily 〈β1, αi〉 = 1
and 〈β2, αi〉 = −1. Denote k2 = kβ2 , ϕ(U) = (λ

2, w2), ϕ(U − {β1}) = (λ1, w1)
and write

(λ1, w1)
D(β1,k1)
−−−−−−→ (λ2, w2)

with λ1, λ2 dominant and k1 ∈ N (by induction). We prove the

Lemma 3.13. If β1 is such that αi = β1 − β2 is a simple root, then for λ1

defined above there is k2 = 〈λ1, αi〉 + 1 ∈ N and the weight λ3 = λ2 + k2β2 is
dominant.

Proof: The value of k2 is defined so that 2.4 and therefore 2.5 hold. Hence

k1 + k2 = 〈λ2 + δ, β1 − β2〉 = 〈λ2, αi〉+ 1 = 〈λ1, αi〉+ k
1〈β1, αi〉+ 1,

and since 〈β1, αi〉 = 1, we get k
2 = 〈λ1, αi〉+ 1 ∈ N, what we had to prove.

Dominance of λ3: by definition, λ3 is dominant if and only if

〈λ3, αj〉 = 〈λ2 + k2β2, αj〉 ≥ 0

for all j ∈ {1, . . . , n}, where αj are the simple roots. If 〈β
2, αj〉 ≥ 0 then

〈λ3, αj〉 ≥ 0 as well. If 〈β
2, αk〉 < 0 for some k, then necessarily 〈β2, αk〉 = −1
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(this follows from the extremality of all weights), and the weight β1 = β2 +αk is
minimal in U . Then

〈λ3, αk〉 = 〈λ2 + (〈λ1, αk〉+ 1)β
2, αk〉

= 〈λ2, αk〉+ (〈λ
1, αk〉+ 1)〈β

2, αk〉

= 〈λ2 − λ1, αk〉 − 1 = k
1〈β1, αk〉 − 1 = k

1 − 1 ≥ 0.

�

2. In the “branching” case, introduce the following notation: let U1, U2 be
acceptable subgraphs and β1, β2 weights such that V = U1 ∪ {β2} = U2 ∪ {β1}.
This means that β1, β2 are incomparable. Denote T = U1∩U2, ϕ(T ) = (λ,w) and
ϕ(U i) = (λi, wi), i = 1, 2, and denote by ki the order of the arrow D(βi, ki, λ) :
(λ,w)→ (λi, wi), i = 1, 2. Pictured, we have a subgraph

T[[[̂β1 ''')β2
U1''')β2 U2[[[̂β1

V

in H and

(λ,w)����β1,k1
AAACβ2,k2

(λ1, w1) (λ2, w2)

in B with λ, λ1, λ2 dominant. We want to prove that then

Lemma 3.14.

(λ,w)[[[̂β1,k1
''')β2,k2

(λ1, w1)AAACβ2,k2 (λ2, w2)����β1,k1

(λ3, w3)

is a subgraph of B, i.e. B has the square completing property.

Proof: Consider the decomposition V = U1∪β2, then ϕ(U1) = (λ1, ω1), ϕ(V ) =

(λ3, w3), where λ3 = λ1+ k2β2 and w3 = w1+ k2 and we have k2
′
= kβ2 defined

so that 2.5 holds. We prove the
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Lemma 3.15. k2
′
= k2 and λ3 is dominant.

Proof: Let β = sup(β1, β2), i.e. the least weight greater than both β1, β2. Then
there exist positive roots α1, α2 such that β = β1+α1 = β2+α2, with the property
that the expression of αk , k = 1, 2, as a linear combination of simple roots has
the least possible number of summands; in other words no simple root appears in
the expression for both α1, α2. We also know by 3.10 that 〈βi, αj〉 = −1 if i = j
and 1 if i 6= j.

We know

w = wλ,β2 − k2r,

w1 = wλ1,β2 − k2
′
r = w + k1.

Therefore

wλ1,β2 − k2
′
r = wλ,β2 − k2r + k1,

−(λ1 + δ, β2)− k2
′
r = −(λ+ δ, β2)− k2r + k1,

(k2 − k2
′
)r = (λ1 − λ, β2) + k1 = k1(β1, β2) + k1.

This vanishes if and only if (β1, β2) = −1. β1, β2 are incomparable, hence αk 6= 0,
k = 1, 2. It follows that

(β1, β2) = (β1, β1) + (β1, α1 − α2) = 2r − 1− 2r = −1.

Prove now the dominance of λ3. Let αj be a simple root. Again, if 〈β
2, αj〉 ≥ 0,

then 〈λ3, αj〉 ≥ 0, too. If for some j, 〈β
2, αj〉 < 0, then 〈β2, αj〉 = −1 again and

〈λ3, αj〉 = 〈λ+ k1β1 + k2β2, αj〉

= 〈λ2, αj〉+ k
1〈β1, αj〉,

but 〈β1, αj〉 ≥ 0, hence 〈λ
3, αj〉 ≥ 0 as required.

It remains to show that 〈β1, αj〉 ≥ 0. αj appears in the expression of α
2 hence

it does not appear in the expression of α1. Therefore 〈β1, αj〉 ≥ 0. �

The role of β1 and β2 may now be interchanged and so we proved that the
value (λ3, w3) = (λ+ k1β1+ k2β2, w+ k1+ k2) does not depend on the choice of
U1, U2, and that there is a square in B as required in 3.14. �
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Then, when ϕ(V ) is defined for all V ∈ Hl+1, we see that ϕ|Hl+1
is a W -graph

isomorphism.
The next aim is to prove that the only arrows that start at points of Bl −Bl−1

(this proves (b)) and the only arrows that end at points of Bl+1−Bl (this proves
(c)) are images of arrows of H . Call a weight β ∈ W admissible for ϕ(U) if the
arrow

(λU , wU )
D(β,k)
−−−−→ (λV , wV )

has a nonnegative integral order k and λV = λU + kβ is dominant.
We have to prove that the weights admissible for λU are exactly the maximal

vertices of W − U . Then, by Remark 3.5, the set of the arrows starting at ϕ(U)
is an isomorphic image under ϕ of the set of the arrows starting at U .
First prove that no point from U is admissible. This follows immediately from

the Corollary 2.11: if β ∈ U , then there exists β′ minimal in U and such that
β′ ≤ β, then d(β′) points to ϕ(U), which contradicts 2.11.
For the case U = W , i.e. U is minimal in H , all weights are in U hence no

weight is admissible. Further suppose U 6=W .
Now, when we know that the maximal weights of W − U are admissible for

ϕ(U), we have to prove that no other weights of W − U are admissible. This
follows immediately from the following

Lemma 3.16. If U 6= W , ϕ(U) = (λ,w) and β2 ∈ W − U is not maximal in

W − U , then λ2 = k2 + β2 is not dominant.

Proof: β2 is not maximal in W − U hence there exists β1 ∈ W − U such that
β1 = β2 + αj , αj simple root, and

(λ,w)����β1,k1
AAACβ2,k2

(λ1, w1) (λ2, w2)

with λ1 not necessarily dominant.
We know that 〈β1, αj〉 = 1 and 〈β

2, αj〉 = −1. We show that then 〈λ2, αj〉 < 0.
By 2.1, we have

w = wλ,β1 − k1r = wλ,β2 − k2r,

−〈λ+ δ, β1〉 − k1 = −〈λ+ δ, β2〉 − k2,

hence

(3.1) k2 − k1 = 〈λ+ δ, β1 − β2〉 = 〈λ+ δ, αj〉.

Now compute

〈λ2, αj〉 = 〈λ1 − k1β1 + k2β2, αj〉

= 〈λ1, αj〉 − k1 − k2

= 〈λ1, αj〉 − 2k
1 − 〈λ+ δ, αj〉

= k1〈β1, αj〉 − 2k
1 − 〈δ, αj〉 = −k1 − 1.
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It is hence enough to show that k1 ≥ 0. If β1 is admissible for ϕ(U), then k1 is
positive by definition. If β1 is not admissible, then there exists β0 maximal in
W − U , hence admissible for ϕ(U), so the operator D(β0, k0) has order k0 > 0.
But by Lemma 2.5, β0 ≥ β1 implies wλ,β0 ≤ wλ,β1 , thus k

1 ≥ k0 > 0. �

This proves (b); the statement (c) is proved dually in the following sense. We

know (see Lemma 2.6) that if (λ1, w1)
β1,k1

−−−→ (λ,w) then w = wλ,β1 + k
1r. If

(λ1, w1)AAACβ1,k1 (λ2, w2)����β2,k2

(λ,w)

and β2 = β1 + αj then we get a dual formula to (3.1), namely

k1 − k2 = 〈λ+ δ, β1 − β2〉 = 〈λ+ δ, αj〉,

and by repeating the computation in the proof of the Lemma 3.16 we get that λ2

is not dominant. Therefore only minimal weights in U can enter into ϕ(U).

This finishes the proof of Theorem 3.11. �

Corollary 3.17. It follows from the proof (Lemma 3.15) that for every weight
β of gs

0 there exists a positive integer kβ such that every operator labeled β has

the order kβ .

4. Practical computations, examples

4.1 Practical recipe. The principle of constructing the Hasse diagram from
the weight graph may be formulated as the following recipe. The idea here is to
understand the weight graph as composed of elementary pieces (rules A, B). To
every such piece there exists a corresponding block in the BGG sequence. The
most important information is how to glue these blocks together (rules AA etc.).

Recipe 4.1. For every following subgraph of the weight graph (on the left) there
exists a subgraph of the Hasse diagram (on the right):

Rule A: An elementary object: a point ⇒ an arrow (by definition).

β =⇒
•uβ

•
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Rule B: Another elementary object: two incomparable points ⇒ a square (by
Case 2 of the proof of Theorem 3.11).

β1 β2 =⇒

•[[[̂β1 ''')β2
•''')β2 •[[[̂β1

•

Rule AA: Two points connected by an arrow ⇒ two arrows with a common

point (by Case 1).

β1u
β2

=⇒

•uβ1

•uβ2

•

Rule BB: Three points, two of them ordered, the third one incomparable with

both of them ⇒ two squares with a common edge.

β1u β3

β2

=⇒

•[[[̂β1 ''')β3
•[[[̂β2 ''')β3 •[[[̂β1

•''')β3 •[[[̂β2
•

Rule AB: A point with arrows into two incomparable points ⇒ an arrow and
a square with a common point.

β1hhhk 4446
β2 β3

=⇒

•uβ1

•[[[̂β3 ''')β2
•''')β2 •[[[̂β3

•
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4.2 Examples. In the following table, all |1|-graded complex simple Lie algebras
together with the Dynkin diagram with the crossed root, with the subalgebra gs

0
(given by the non-crossed roots) and with the representation g1 are listed. For
more information about the classification of |1|-graded Lie algebras, see [23].

g Dynkin diagram gs
0 g1

Ap+q−1
α1
•

α2
• · · ·

αp−1
•

αp
×

αp+1
•

αp+2
• · · ·

αp+q−1
• Ap−1 ⊕Aq−1 C

pq

Bn
α1
×

α2
• · · ·

αn−1

• >
αn
• Bn−1 C

2n−1

Cn
α1
•

α2
• · · ·

αn−1

• <
αn
× An−1 ⊙2 C

n

Dn
α1
•

α2
• · · ·

αn−3

•
αn−2

•
• αn−1

αn
× An−1 Λ2Cn

Dn
α1
×

α2
• · · ·

αn−3

•
αn−2

•
• αn−1

αn
• Dn−1 C

2n−2

E6
α1
•

α2
•

α3
•
• α4

α5
•

α6
× D5 S 1

2

E7
α1
•

α2
•

α3
•
• α4

α5
•

α6
•

α7
× E6 M83

(Here S 1
2

is a half-spin representation and M83 is the space of 3× 3 Hermitian

Cayley matrices (see [21]).)
We restrict ourselves to the cases where all weights of g1 are extremal —

that are all cases but Bn (odd conformal case) and Cn (spinorial case) — the
method must be proved independently for them. However, the remaining cases
satisfy the extremality condition — the Grassmanian case (Ap+q−1) with special
quaternionic subcase (for p = 2), the even conformal case (g = Dn, g

s
0 = Dn−1),

the spinorial case (g = Dn, g
s
0 = An−1) and the two exceptional cases E6, E7.

We show examples of conformal case, of spinorial and Grassmanian cases in low
dimensions and of the case E6. The pictures consist of the weight graph on the
left and the Hasse diagram with labeled arrows on the right. In more complicated
diagrams, we draw the label only for one parallel arrow in a square, using the fact
that parallel edges of a square have the same labels.
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Even conformal case: g = Dn+1, g
s
0 = Dn, g1 = Cn, highest weight e1.

e1u
e2u
e3

...

en−1[[[̂ ''')
en4446 −enhhhk

−en−1

...

−e3u
−e2u
−e1

=⇒

•ue1

•ue2

•ue3

•

...

•uen−1

•[[[̂en

''')−en

•''')−en

•[[[̂en

•u−en−1

•

...

•u−e3

•u−e2

•u−e1

•
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Spinorial case: g = Dn+1, g
s
0 = An, g1 = Λ

2Cn+1, highest weight e1 + e2.

n = 1

e1 + e2 =⇒
•ue1+e2

•

n = 2

e1 + e2hhhk
e1 + e34446

e2 + e3

=⇒

•ue1+e2

•ue1+e3

•ue2+e3

•

n = 3

e1 + e2hhhk
e1 + e3hhhk 4446

e1 + e44446 e2 + e3hhhk
e2 + e44446

e3 + e4

=⇒

•ue1+e2

•ue1+e3

•[[[̂e1+e4
''')e2+e3

•''')
e2+e3

•[[[̂ e1+e4

•ue2+e4

•ue3+e4

•
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Grassmanian case 2, 4 (quaternionic): g = A5, g
s
0 = A1 × A3, g1 = C2 ⊗ C4,

highest weight (e1, e1). For brevity, we use the notation ij = (ei, ej).

11�� [℄
12�� [℄ 21��

13�� [℄ 22��
14[℄ 23��

24

=⇒

•��11
•��12 [℄
21

•��13 [℄ •��
•��14 [℄ •�� [℄

22

•[℄ •�� [℄ •��
•[℄ •�� [℄

23

•[℄ •��
•[℄
24

•
Grassmanian case 3, 3: g = A5, g

s
0 = A2 × A2, g1 = C3 ⊗ C3, highest weight

(e1, e1).

11�� [℄
12�� [℄ 21�� [℄

13[℄ 22�� [℄ 31��
23[℄ 32��

33

=⇒

•444711
•444712 ����21

•444713 ���� •��4447
•���� •4447 �� ����22•4447

•��31 ����•4447 ���� •��4447
•���� •�� ����23•��4447

•��32 ����•4447 •��
•���� •��

•��33
•
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Case E6: g = E6, gs
0 = D5, the representation g1 is the half-spin repre-

sentation with the highest weight (12 ,
1
2 ,
1
2 ,
1
2 ,−

1
2 ), all weights are of the form

(±12 ,±
1
2 ,±

1
2 ,±

1
2 ,±

1
2 ) with even number of the sign +. For simplicity reasons,

these weights are represented in the picture just by a dot.

•��
•��

•�� [℄
•�� [℄ •��

•[℄ •�� [℄
•[℄ •�� [℄

•�� [℄ •��
•[℄ •��

•��
•��

•

=⇒

•[℄
•[℄

•[℄
•�� [℄

•[℄ •�� [℄
•�� [℄ •��

•�� [℄ •��
•�� [℄ •�� [℄

•[℄ •�� [℄ •��
•[℄ •�� [℄

•[℄ •�� [℄
•�� [℄ •��

•[℄ •��
•��

•��
•��

•
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[24] Kolář I., Michor P.W., Slovák J., Natural Operations in Differential Geometry, Springer,

1993.



52 L.Krump

[25] Lepowsky J., A generalization of the Bernstein-Gelfand-Gelfand resolution, J. Algebra 49
(1977), 496–511.

[26] Sharpe R.W., Differential Geometry, Graduate Texts in Mathematics 166, Springer-Verlag,
1997.

[27] Slovák J., On the geometry of almost Hermitian symmetric structures, in Proceedings of
the Conference Differential Geometry and Applications, 1995, Brno, Masaryk University,
Brno (1996), pp. 191–206, electronically available at www.emis.de.

[28] Slovák J., Parabolic geometries, Research Lecture Notes, Part of DrSc. Dissertation,
Preprint IGA 11/97, electronically available at www.maths.adelaide.edu.au.

[29] Verma D.N., Structure of certain induced representations of complex semisimple Lie alge-
bras, Bull. Amer. Math. Soc. 74 (1968), 160–166.
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