[1] Bruck R.:
A Survey of Binary Systems. (3rd printing, corrected), Springer-Verlag, Berlin, 1971.
MR 0093552 |
Zbl 0141.01401
[2] Chein O., Pflugfelder H.O., Smith J.D.H. (eds.):
Quasigroups and Loops: Theory and Applications. Sigma Series in Pure Mathematics, Vol. 8, Heldermann Verlag, Berlin, 1990.
MR 1125806 |
Zbl 0719.20036
[3] Gabrieli E., Karzel H.:
Reflection geometries over loops. Results Math. 32 (1997), 61-65.
MR 1464673 |
Zbl 0922.51007
[4] Gabrieli E., Karzel H.:
Point-reflection geometries, geometric K-loops and unitary geometries. Results Math. 32 (1997), 66-72.
MR 1464674 |
Zbl 0922.51006
[5] Gabrieli E., Karzel H.:
The reflection structures of generalized co-Minkowski spaces leading to K-loops. Results Math. 32 (1997), 73-79.
MR 1464675 |
Zbl 0923.51014
[7] Helgason S.:
Differential Geometry, Lie Groups and Symmetric Spaces. Academic Press, New York, 1978.
MR 0514561 |
Zbl 0993.53002
[8] Karzel H.:
Zusammenhänge zwischen Fastbereichen, scharf zweifach transitiven Permutationsgruppen und $2$-Strukturen mit Rechtecksaxiom. Abh. Math. Sem. Univ. Hamburg 32 (1968), 191-206.
MR 0240715 |
Zbl 0162.24101
[9] Kiechle H.:
Theory of $K$-loops. Habilitationsschrift, Universität Hamburg, Hamburg, Germany, 1998.
Zbl 0997.20059
[10] Kikkawa M.:
On some quasigroups of algebraic models of symmetric spaces. Mem. Fac. Lit. Sci. Shimane Univ. (Nat. Sci.) 6 (1973), 9-13.
MR 0327962 |
Zbl 0264.53028
[11] Kikkawa M.:
The geometry of homogeneous Lie loops. Hiroshima Math. J. 5 (1975), 141-179.
MR 0383301
[13] Klingenberg W.P.A.:
Riemannian Geometry. 2nd ed., Studies in Mathematics I, de Gruyter, New York, 1995.
MR 1330918 |
Zbl 1073.53006
[14] Kepka T.:
A construction of Bruck loops. Comment. Math. Univ. Carolinae 25 (1984), 591-595.
MR 0782010 |
Zbl 0563.20053
[15] Kreuzer A.:
Inner mappings of Bol loops. Math. Proc. Cambridge Philos. Soc. 123 (1998), 53-57.
MR 1474864
[16] Loos O.:
Symmetric Spaces. vol. 1, Benjamin, New York, 1969.
Zbl 0228.53034
[17] Miheev P.O., Sabinin L.V.:
Quasigroups and differential geometry. Chapter XII in 2, pp.357-430.
MR 1125818 |
Zbl 0721.53018
[18] Nesterov A.I., Sabinin L.V.:
Smooth loops, generalized coherent states and geometric phases. Int. J. Theor. Phys. 36 (1997), 1981-1989.
MR 1476347 |
Zbl 0883.22020
[19] Pflugfelder H.O.:
Quasigroups and Loops: Introduction. Sigma Series in Pure Mathematics, Vol. 7, Heldermann Verlag, Berlin, 1990.
MR 1125767 |
Zbl 0715.20043
[20] Robinson D.A.:
Bol loops. Ph.D. Dissertation, University of Wisconsin, Madison, Wisconsin, 1964.
Zbl 0803.20053
[21] Robinson D.A.:
A loop-theoretic study of right-sided quasigroups. Ann. Soc. Sci. Bruxelles Sér. I 93 (1979), 7-16.
MR 0552166 |
Zbl 0414.20058
[22] Sabinin L.V.:
On the equivalence of categories of loops and homogeneous spaces. Soviet Math. Dokl. 13 (1972), 970-974.
Zbl 0291.18006
[23] Sabinin L.V.:
Methods of nonassociative algebra in differential geometry (Russian). Supplement to the Russian transl. of S. Kobayashi, K. Nomizu, ``Foundations of Differential Geometry'', vol. 1, Nauka, Moscow, 1981, pp. 293-339.
MR 0628734
[25] Sabinin L.V., Sabinina L.L., Sbitneva L.:
On the notion of gyrogroup. Aequationes Math. 56 (1998), 11-17.
MR 1628291 |
Zbl 0923.20051
[27] Ungar A.A.:
The relativistic noncommutative nonassociative group of velocities and the Thomas rotation. Results Math. 16 (1989), 168-179.
MR 1020224 |
Zbl 0693.20067
[29] Ungar A.A.:
Thomas precession and its associated grouplike structure. Amer. J. Phys. 59 (1991), 824-834.
MR 1126776
[30] Ungar A.A.:
The holomorphic automorphism group of the complex disk. Aequationes Math. 47 (1994), 240-254.
MR 1268034 |
Zbl 0799.20032
[31] Ungar A.A.:
Thomas precession: its underlying gyrogroup axioms and their use in hyperbolic geometry and relativistic physics. Found. Phys. 27 (1997), 881-951.
MR 1477047