Previous |  Up |  Next

Article

Keywords:
K-loop; Bol loop; Kikkawa loop; left power alternative loop; 2-divisible loop; derivation
Summary:
A {\it K-loop\/} or {\it Bruck loop\/} is a Bol loop with the automorphic inverse property. An overview of the most important theorems on K-loops and some of their relatives, especially Kikkawa loops, is given. First, left power alternative loops are discussed, then Kikkawa loops are considered. In particular, their nuclei are determined. Then the attention is paid to general K-loops and some special classes of K-loops such as 2-divisible ones. To construct examples, the method of {\it derivation\/} is introduced. This has been used in the past to construct quasifields from fields. Many known methods to constructing loops can be seen as special cases of derivations. The examples given show the independence of various axioms.
References:
[1] Albert A.A.: Quasigroups I. Trans. Amer. Math. Soc. 54 (1943), 507-519. MR 0009962 | Zbl 0063.00039
[2] Artzy R.: Relations between loop identities. Proc. Amer. Math. Soc. 11 (1960), 847-851. MR 0117295
[3] Belousov V.D.: Foundations of the Theory of Quasigroups and Loops. Izdat. Nauka, Moscow, 1967, (Russian). MR 0218483
[4] Bol G.: Gewebe und Gruppen. Math. An. 114 (1937), 414-431. MR 1513147 | Zbl 0016.22603
[5] Bruck R.H.: A Survey of Binary Systems. 2$^{nd}$ ed., Springer-Verlag, Berlin-Heidelberg-New York, 1966. MR 0093552 | Zbl 0141.01401
[6] Burn R.P.: Bol quasi-fields and Pappus' theorem. Math. Z. 105 (1968), 351-364. MR 0230215 | Zbl 0159.49803
[7] Caggegi A.: Nuovi quasicorpi di Bol. Matematiche (Catania) 35 (1980), 241-247. MR 0698746 | Zbl 0525.51008
[8] Choudhury A.C.: Quasi-groups and nonassociative systems. I. Bull. Calcutta Math. Soc. 40 (1948), 183-194. MR 0029385
[9] Fuchs L.: Infinite Abelian Groups. Academic Press, New York-London, 1970. MR 0255673 | Zbl 0338.20063
[10] Funk M., Nagy P.T.: On collineation groups generated by Bol reflections. J. Geom. 48 (1993), 63-78. MR 1242703 | Zbl 0793.51001
[11] Glauberman G.: On loops of odd order. J. Algebra 1 (1964), 374-396. MR 0175991 | Zbl 0123.01502
[12] Goodaire E.G., Robinson D.A.: Semi-direct products and Bol loop. Demonstratio Math. 27 (1994), 573-588. MR 1319403 | Zbl 0831.20095
[13] Karzel H.: Unendliche Dicksonsche Fastkörper. Arch. Math. (Basel) 16 (1965), 247-256. MR 0183668 | Zbl 0131.01701
[14] Karzel H.: Zusammnehänge zwischen Fastbereichen, scharf zweifach transitiven Permutationsgruppen und $2$-Strukturen mit Rechtecksaxiom. Abh. Math. Sem. Univ. Hamburg 32 (1968), 191-206. MR 0240715
[15] Kiechle H.: Lokal endliche Quasikörper. Ph.D. Thesis, Techn. Univ. München, 1990. Zbl 0715.12007
[16] Kiechle H.: Der Kern einer automorphen Ableitung und eine Anwendung auf normale Teilkörper verallgemeinerter André-Systeme. Arch. Math. (Basel) 58 (1992), 514-520. MR 1156585 | Zbl 0725.12006
[17] Kikkawa M.: Geometry of homogeneous Lie loops. Hiroshima Math. J. 5 (1975), 141-179. MR 0383301 | Zbl 0304.53037
[18] Kikkawa M.: On some quasigroups of algebraic models of symmetric spaces III. Mem. Fac. Sci. Shimane Univ. 9 (1975), 7-12. MR 0412316 | Zbl 0322.20035
[19] Kist G.: Theorie der verallgemeinerten kinematischen Räume. Beiträge zur Geometrie und Algebra 14 (1986), TUM-M8611, Habilitationsschrift, Techn. Univ. München. MR 0924326 | Zbl 0636.51012
[20] Kreuzer A.: Beispiele endlicher und unendlicher K-Loops. Resultate Math. 23 (1993), 355-362. MR 1215220 | Zbl 0788.20036
[21] Kreuzer A.: Construction of finite loops of even order. Proc. of the Conference on Nearrings and Nearfields (Fredericton, NB, Canada, 18-24 July, 1993), Y. Fong & al., eds., Kluwer Acad. Press, 1995, pp.169-179. MR 1366476 | Zbl 0838.20079
[22] Kreuzer A.: Inner mappings of Bol loops. Math. Proc. Cambridge Philos. Soc. 123 (1998), 53-57. MR 1474864
[23] Kreuzer A., Wefelscheid H.: On K-loops of finite order. Resultate Math. 25 (1994), 79-102. MR 1262088 | Zbl 0803.20052
[24] Lüneburg H.: Translation Planes. Springer-Verlag, Berlin-Heidelberg-New York, 1980. MR 0572791
[25] Miheev P.O., Sabinin L.V.: Quasigroups and differential geometry. Quasigroups and Loops: Theory and Applications (O. Chein, H.O. Pflugfelder & J.D.H. Smith, eds.), Heldermann Verlag, Berlin, 1990, pp.357-430. MR 1125818 | Zbl 0721.53018
[26] Pflugfelder H.O.: Quasigroups and Loops: Introduction. Heldermann-Verlag, Berlin, 1990. MR 1125767 | Zbl 0715.20043
[27] Robinson D.A.: Bol loops. Trans. Amer. Math. Soc. 123 (1966), 341-354. MR 0194545 | Zbl 0163.02001
[28] Robinson D.A.: Bol quasigroups. Publ. Math. Debrecen 19 (1972), 151-153. MR 0325829
[29] Sabinin L.V., Sabinina L.L., Sbitneva L.V.: On the notion of gyrogroup. Aequationes Math. 56 (1998), 11-17. MR 1628291 | Zbl 0923.20051
[30] Sabinin L.V., Sbitneva L.V.: Half Bol loops. Webs and Quasigroups, Tver Univ. Press, 1994, pp.50-54. MR 1413337 | Zbl 0897.20044
[31] Sharma B.L.: Left loops which satisfy the left Bol identity. Proc. Amer. Math. Soc. 61 (1976), 189-195. MR 0422480
[32] Timm J.: Zur Konstruktion von Fastringen I. Abh. Math. Sem. Univ. Hamburg 35 (1970), 57-74. MR 0276283 | Zbl 0217.06402
[33] Ungar A.A.: The relativistic noncommutative nonassociative group of velocities and the Thomas rotation. Resultate Math. 16 (1989), 168-179. MR 1020224 | Zbl 0693.20067
[34] Ungar A.A.: Weakly associative groups. Resultate Math. 17 (1990), 149-168. MR 1039282 | Zbl 0699.20055
[35] Ungar A.A.: The holomorphic automorphism group of the complex disk. Aequationes Math. 47 (1994), 240-254. MR 1268034 | Zbl 0799.20032
[36] Wähling H.: Theorie der Fastkörper. Thales Verlag, Essen, 1987. MR 0956467
Partner of
EuDML logo