[ALM] Alsedà L., Llibre J., Misiurewicz M.:
Combinatorial Dynamics and Entropy in Dimension One. World Scientific Publ. Singapore (1993).
MR 1255515
[AK] Auslander J., Katznelson Y.:
Continuous maps of the circle without periodic points. Israel. J. Math. 32 (1979), 375-381.
MR 0571091 |
Zbl 0442.54011
[BCJ] Balibrea F., Cánovas J.S., Jiménez López V.: Commutativity and noncommutativity of topological sequence entropy. preprint.
[BC] Block L.S., Coppel W.A.:
Dynamics in One Dimension. Lecture Notes in Math., vol. 1513 Springer Berlin (1992).
MR 1176513 |
Zbl 0746.58007
[FS] Franzová N., Smítal J.:
Positive sequence entropy characterizes chaotic maps. Proc. Amer. Math. Soc. 112 (1991), 1083-1086.
MR 1062387
[G] Goodman T.N.T.:
Topological sequence entropy. Proc. London Math. Soc. 29 (1974), 331-350.
MR 0356009 |
Zbl 0293.54043
[H] Hric R.:
Topological sequence entropy for maps of the interval. Proc. Amer. Math. Soc. 127 (1999), 2045-2052.
MR 1487372 |
Zbl 0923.26004
[JS] Janková K., Smítal J.:
A characterization of chaos. Bull. Austral. Math. Soc. 34 (1986), 283-292.
MR 0854575
[KS] Kolyada S., Snoha Ł.:
Topological entropy of nonautonomous dynamical systems. Random and Comp. Dynamics 4 (1996), 205-233.
MR 1402417 |
Zbl 0909.54012
[Ku] Kuchta M.:
Characterization of chaos for continuous maps of the circle. Comment. Math. Univ. Carolinae 31 (1990), 383-390.
MR 1077909 |
Zbl 0728.26011
[KuS] Kuchta M., Smítal J.:
Two point scrambled set implies chaos. European Conference on Iteration Theory ECIT'87 World Sci. Publishing Co. Singapore.
MR 1085314
[L] Lemańczyk M.:
The sequence entropy for Morse shifts and some counterexamples. Studia Math. 52 (1985), 221-241.
MR 0825480
[LY] Li T Y., Yorke J.A.:
Period three implies chaos. Amer. Math. Monthly 82 (1975), 985-992.
MR 0385028 |
Zbl 0351.92021
[S] Smítal J.:
Chaotic functions with zero topological entropy. Trans. Amer. Math. Soc. 297 (1986), 269-281.
MR 0849479