Previous |  Up |  Next

Article

Keywords:
topological construct; extensionality; cartesian closedness; tower extension; completely distributive lattice
Summary:
Let $L$ be a completely distributive lattice and {\bf C} a topological construct; a process is given in this paper to obtain a topological construct $\bold C (L)$, called the tower extension of $\bold C$ (indexed by $L$). This process contains the constructions of probabilistic topological spaces, probabilistic pretopological spaces, probabilistic pseudotopological spaces, limit tower spaces, pretopological approach spaces and pseudotopological approach spaces, etc, as special cases. It is proved that this process has a lot of nice properties, for example, it preserves concrete reflectivity, concrete coreflectivity, and it preserves convenient hulls of topological construct, i.e., the extensional topological hulls (ETH), the cartesian closed topological hulls (CCTH) and the topological universe hulls (TUH) of topological constructs.
References:
[1] Adámek J., Herrlich H., Strecker G.E.: Abstract and Concrete Categories. Wiley, New York, 1990. MR 1051419
[2] Adámek J., Koubek V.: Cartesian closed initial completions. Topology Appl. 11 (1980), 1-16. MR 0550868
[3] Antoine P.: Étude élémentaire des catégories d'ensembles structrés. Bull. Soc. Math. Belgique 18 (1960), 142-164, 387-414.
[4] Blasco N., Lowen R.: Fuzzy neighbourhood convergence spaces. Fuzzy Sets and Systems 76 (1995), 395-406. MR 1365406
[5] Bourdaud G.: Some cartesian closed topological categories of convergence spaces. in E. Binz, H. Herrlich (eds.), Categorical Topology, (Proc. Mannheim, 1975), Lecture Notes in Mathematics, 540, Springer, Berlin, 1976, pp.93-108. MR 0493924 | Zbl 0332.54004
[6] Brock P., Kent D.C.: Approach spaces, limit tower spaces and probabilistic convergence spaces. Applied Categorical Structures 5 (1997), 99-110. MR 1456517 | Zbl 0885.54008
[7] Burton M.H.: The relationship between a fuzzy uniformity and its family of $\alpha$-level uniformities. Fuzzy Sets and Systems 54 (1993), 311-315. MR 1215574 | Zbl 0871.54009
[8] Gierz G., et al: A Compendium of Continuous Lattices. Springer, Berlin, 1980. MR 0614752 | Zbl 0452.06001
[9] Herrlich H.: Cartesian closed topological categories. Math. Colloq. Univ. Cape Town 9 (1974), 1-16. MR 0460414 | Zbl 0318.18011
[10] Herrlich H.: Are there convenient subcategories of Top?. Topology Appl. 15 (1983), 263-271. MR 0694546 | Zbl 0538.18004
[11] Herrlich H.: Topological improvements of categories of structured sets. Topology Appl. 27 (1987), 145-155. MR 0911688 | Zbl 0632.54008
[12] Herrlich H.: Hereditary topological constructs. in Z. Frolík (ed.), General Topology and its relations to Modern Analysis and Algebra VI, Proc. Sixth Prague Topological Symposium, Heldermann Verlag, Berlin, 1988, pp.240-262. MR 0952611 | Zbl 0662.18003
[13] Herrlich H.: On the representability of partial morphisms in Top and in related constructs. in F. Borceux (ed.), Categorical Algebra and its Applications, (Proc. Louvain-La-Neuve, 1987), Lecture Notes in Mathematics, 1348, Springer, Berlin, 1988, pp.143-153. MR 0975967 | Zbl 0662.18004
[14] Herrlich H., Nel L.D.: Cartesian closed topological hulls. Proc. Amer. Math. Soc. 62 (1977), 215-222. MR 0476831 | Zbl 0361.18006
[15] Herrlich H., Zhang D.: Categorical properties of probabilistic convergence spaces. Applied Categorical Structures 6 (1998), 495-513. MR 1657510 | Zbl 0917.54003
[16] Herrlich H., Lowen-Colebunders E., Schwarz F.: Improving Top: PrTop and PsTop. in H. Herrlich, H.E. Porst (eds.), Category Theory at Work, Heldermann Verlag, Berlin, 1991, pp.21-34. MR 1147916 | Zbl 0753.18003
[17] Lowen E., Lowen R.: Topological quasitopos hulls of categories containing topological and metric objects. Cahiers Top. Géom. Diff. Cat. 30 (1989), 213-228. MR 1029625 | Zbl 0706.18002
[18] Lowen R.: Fuzzy uniform spaces. J. Math. Anal. Appl. 82 (1981), 370-385. MR 0629763 | Zbl 0494.54005
[19] Lowen R.: Fuzzy neighbourhood spaces. Fuzzy Sets and Systems 7 (1982), 165-189.
[20] Lowen R.: Approach spaces, a common supercategory of TOP and MET. Math. Nachr. 141 (1989), 183-226. MR 1014427 | Zbl 0676.54012
[21] Lowen R.: Approach Spaces, the missing link in the Topology-Uniformity-Metric triad. Oxford Mathematical Monographs, Oxford University Press, 1997. MR 1472024 | Zbl 0891.54001
[22] Lowen R., Windels B.: AUnif: A common supercategory of pMet and Unif. Internat. J. Math. Math. Sci. 21 (1998), 1-18. MR 1486952 | Zbl 0890.54024
[23] Schwarz F.: Description of topological universes. in H. Ehrig et al, (eds.), Categorical Methods in Computor Science with Aspects from Topology, (Proc. Berlin, 1988), Lecture Notes in Computor Science, 393, Springer, Berlin, 1989, pp.325-332. MR 1048372
[24] Preuss G.: Theory of Topological Structures, an Approach to Categorical Topology. D. Reidel Publishing Company, Dordrecht, 1988. MR 0937052 | Zbl 0649.54001
[25] Richardson G.D., Kent D.C.: Probabilistic convergence spaces. J. Austral. Math. Soc., (series A) 61 (1996), 400-420. MR 1420347 | Zbl 0943.54002
[26] Wuyts P.: On the determination of fuzzy topological spaces, and fuzzy neighbourhood spaces by their level topologies. Fuzzy Sets and Systems 12 (1984), 71-85. MR 0734394 | Zbl 0574.54004
[27] Wyler O.: Are there topoi in topology. in E. Binz, H. Herrlich, (eds.), Categorical Topology, (Proc. Mannheim, 1975), Lecture Notes in Mathematics, 540, Springer, Berlin, 1976, pp.699-719. MR 0458346 | Zbl 0354.54001
[28] Wyler O.: Lecture Notes on Topoi and Quasitopoi. World Scientific, Singapore, 1991. MR 1094373 | Zbl 0727.18001
Partner of
EuDML logo