Previous |  Up |  Next

Article

Keywords:
multitotal category; multisolid functor; formal product completion
Summary:
Categories whose Yoneda embedding has a left adjoint are known as total categories and are characterized by a strong cocompleteness property. We introduce the notion of multitotal category $\Cal A$ by asking the Yoneda embedding $\Cal A \rightarrow [\Cal A^{op},\Cal Set]$ to be right multiadjoint and prove that this property is equivalent to totality of the formal product completion $\Pi \Cal A$ of $\Cal A$. We also characterize multitotal categories with various types of generators; in particular, the existence of dense generators is inherited by the formal product completion iff measurable cardinals cannot be arbitrarily large.
References:
[1] Adámek J., Herrlich H., Strecker G.E.: Abstract and Concrete Categories. John Wiley and Sons, New York, 1990. MR 1051419
[2] Adámek J., Rosický J.: Accessible and Locally Presentable Categories. Cambridge University Press, Cambridge, 1995.
[3] Adámek J., Tholen W.: Total categories with generators. J. Algebra 133 (1990), 63-78. MR 1063381
[4] Börger R., Tholen W.: Total categories and solid functors. Canad. J. Math. 42.1 (1990), 213-229. MR 1051726
[5] Börger R., Tholen W., Wischnewsky M.B., Wolff H.: Compact and hypercomplete categories. J. Pure Appl. Algebra 21 (1981), 120-140. MR 0614376
[6] Carboni A., Johnstone P.T.: Connected limits, familial representability and Artin glueing. Math. Struct. in Comp. Science 5 (1995), 1-19. MR 1377312 | Zbl 0849.18002
[7] Diers Y.: Catègories localisables. These de doctorat d'état, Université Pierre et Marie Curie - Paris 6, 1977.
[8] Diers Y.: Catègories localement multiprésentables. Arch. Math. 34 (1980), 344-356. MR 0593951 | Zbl 0453.18002
[9] Gabriel P., Ulmer F.: Lokal präsentierbare Kategorien. Lecture Notes in Math. 221, Springer, Berlin, 1971. MR 0327863 | Zbl 0225.18004
[10] Isbell J.R.: Adequate subcategories. Illinois J. Math. 4 (1960), 541-552. MR 0175954 | Zbl 0104.01704
[11] Kelly M.: A survey of totality for enriched and ordinary categories. Cahiers Topologie Géom. Différentielle Catégoriques 27 (1986), 109-131. MR 0850527 | Zbl 0593.18007
[12] Rosický J., Tholen W.: Accessibility and the solution set condition. J. Pure Appl. Algebra 98 (1995), 189-208. MR 1319969
[13] Sousa L.: Note on multisolid categories. J. Pure Appl. Algebra 129 (1998), 201-205. MR 1624462 | Zbl 0939.18003
[14] Street R.: The family approach to total cocompleteness and toposes. Trans. Amer. Math. Soc. 284 (1984), 355-369. MR 0742429 | Zbl 0512.18001
[15] Street R., Walters R.F.C.: Yoneda structures on $2$-categories. J. Algebra 50 (1978), 350-379. MR 0463261 | Zbl 0401.18004
[16] Tholen W.: Semi-topological functors I. J. Pure Appl. Algebra 15 (1979), 53-73. Zbl 0413.18001
[17] Tholen W.: Note on total categories. Bull. Austral. Math. Soc. 21 (1980), 169-173. MR 0574836 | Zbl 0431.18002
[18] Tholen W.: MacNeille completions of concrete categories with local properties. Comment. Math., Univ. St. Pauli 28 (1979), 179-202. MR 0578672
[19] Wood R.J.: Some remarks on total categories. J. Algebra 75 (1982), 538-545. MR 0653907 | Zbl 0504.18001
Partner of
EuDML logo