Previous |  Up |  Next

Article

Keywords:
relative finiteness conditions; relative coherence; large subdirect products of $n$-flat modules
Summary:
In this paper necessary and sufficient conditions for large subdirect products of $n$-flat modules from the category $Gen(Q)$ to be $n$-flat are given.
References:
[1] Bican L., Kepka T., Němec P.: Rings, Modules and Preradicals. Marcel Dekker Inc., New York and Basel, 1982. MR 0655412
[2] Chase S.U.: Direct products of modules. Trans. Amer. Math. Soc. 97 (1960), 457-473. MR 0120260
[3] Jianlong Chen, Nanqing Ding: On $n$-coherent rings. Comm. Algebra 24 (10) (1996), 3211-3216. MR 1402554
[4] Colby R.R., Rutter E.A., Jr.: $\prod$-flat and $\prod$-projective modules. Arch. Math. 22 (1971), 246-251. MR 0292881
[5] Jirásko J.: Large subdirect products of relative flat modules. Conf. Abelian Groups and Modules, Padova, 1994.
[6] Jirásková H.: Generalized flatness and coherence. Comment. Math. Univ. Carolinae 21 (1980), 293-308. MR 0580684
[7] Jones M.F.: Coherence relative to a hereditary torsion theory. Comm. Algebra 10 (1982), 719-739. MR 0650869
[8] Lenzig H.: Endlich präsentierbare Moduln. Arch. Math. 20 (1969), 262-266. MR 0244322
[9] Loustaunau P.: $\Cal F$-products of injective, flat and projective modules. Comm. Algebra 18 (1990), 3671-3683. MR 1068613 | Zbl 0727.16002
[10] Loustaunau P.: Large subdirect products of projective modules. Comm. Algebra 17 (1989), 197-215. MR 0970872 | Zbl 0664.16019
[11] Oyonarte L., Torrecillas B.: Large subdirect products of flat modules. Comm. Algebra 24 (4) (1996), 1389-1407. MR 1380601 | Zbl 0845.16003
[12] Oyonarte L., Torrecillas B.: Large subdirect products of graded modules. Comm. Algebra 27 (2) (1999), 681-701. MR 1671963 | Zbl 0923.16035
Partner of
EuDML logo