Article
Keywords:
blow-up; global existence; asymptotic behavior; maximum principle
Summary:
We obtain some sufficient conditions under which solutions to a nonlinear parabolic equation of second order with nonlinear boundary conditions tend to zero or blow up in a finite time. We also give the asymptotic behavior of solutions which tend to zero as $t\rightarrow\infty$. Finally, we obtain the asymptotic behavior near the blow-up time of certain blow-up solutions and describe their blow-up set.
References:
[1] Boni T.K.:
Sur l'explosion et le comportement asymptotique de la solution d'une équation parabolique semi-linéaire du second ordre. C.R. Acad. Paris, t. 326, Série I, 1 (1998), 317-322.
MR 1648453 |
Zbl 0913.35069
[2] Chipot M., Fila M., Quittner P.:
Stationary solutions, blow-up and convergence to stationary solutions for semilinear parabolic equations with nonlinear boundary conditions. Acta Math. Univ. Comenianae, Vol. LX, 1 (1991), 35-103.
MR 1120596 |
Zbl 0743.35038
[3] Egorov Yu.V., Kondratiev V.A.:
On blow-up solutions for parabolic equations of second order. in `Differential Equations, Asymptotic Analysis and Mathematical Physics', Berlin, Academie Verlag, 1997, pp.77-84.
MR 1456179 |
Zbl 0879.35081
[4] Friedman A., McLeod B.:
Blow-up of positive solutions of semilinear heat equations. Indiana Univ. Math. J. 34 (1985), 425-447.
MR 0783924 |
Zbl 0576.35068
[5] Protter M.H., Weinberger H.F.:
Maximum Principles in Differential Equations. Prentice Hall, Englewood Cliffs, NJ, 1967.
MR 0219861 |
Zbl 0549.35002
[6] Rossi J.D.:
The blow-up rate for a semilinear parabolic equation with a nonlinear boundary condition. Acta Math. Univ. Comenianae, Vol. LXVII, 2 (1998), 343-350.
MR 1739446 |
Zbl 0924.35017