Previous |  Up |  Next

Article

Keywords:
prime ring; semiprime ring; derivation; Jordan derivation; left (right) centralizer; left (right) Jordan centralizer
Summary:
The purpose of this paper is to prove the following result: Let $R$ be a $2$-torsion free semiprime ring and let $T:R\rightarrow R$ be an additive mapping, such that $2T(x^2)=T(x)x+xT(x)$ holds for all $x\in R$. In this case $T$ is left and right centralizer.
References:
[1] Brešar M., Vukman J.: Jordan derivations on prime rings. Bull. Austral. Math. Soc. 37 (1988), 321-323. MR 0943433
[2] Brešar M.: Jordan derivations on semiprime rings. Proc. Amer. Math. Soc. 104 (1988), 1003-1006. MR 0929422
[3] Cusak J.: Jordan derivations on rings. Proc. Amer. Math. Soc. 53 (1975), 321-324. MR 0399182
[4] Herstein I.N.: Jordan derivations in prime rings. Proc. Amer. Math. Soc. 8 (1957), 1104-1110. MR 0095864
[5] Herstein I.N.: Rings with involution. Chicago Lectures in Math., Univ. of Chicago Press, Chicago, London, 1976. MR 0442017 | Zbl 0495.16007
[6] Posner E.: Derivations in prime rings. Proc. Amer. Math. Soc. 8 (1957), 1093-1100. MR 0095863
[7] Vukman J.: Centralizers in prime and semiprime rings. Comment. Math. Univ. Carolinae 38 (1997), 231-240. MR 1455489
[8] Zalar B.: On centralizers of semiprime rings. Comment. Math. Univ. Carolinae 32 (1991), 609-614. MR 1159807 | Zbl 0746.16011
Partner of
EuDML logo