Previous |  Up |  Next

Article

Keywords:
$K$-weakly precompact set; uniform Gateaux differentiability
Summary:
We give a characterization of $K$-weakly precompact sets in terms of uniform Gateaux differentiability of certain continuous convex functions.
References:
[1] Bator E.M., Lewis P.W.: Weak precompactness and the weak RNP. Bull. Polish Acad. Sci. Math. 37 (1989), 443-452. MR 1101905 | Zbl 0767.46011
[2] Fitzpatrick S.P.: Separably related sets and the Radon-Nikodym property. Illinois J. Math. 29 (1985), 229-247. MR 0784521 | Zbl 0546.46009
[3] Matsuda M.: A characterization of Pettis sets in terms of the Bourgain property. Math. Japon. 41 (1995), 433-439. MR 1326976 | Zbl 0842.46012
[4] Matsuda M.: On localized weak precompactness in Banach spaces. Publ. RIMS, Kyoto Univ. 32 (1996), 473-491. MR 1409798 | Zbl 0863.46010
[5] Rosenthal H.: A characterization of Banach spaces containing $l_1$. Proc. Nat. Acad. Sci. 71 (1974), 2411-2413. MR 0358307 | Zbl 0297.46013
Partner of
EuDML logo