Article
Keywords:
$K$-weakly precompact set; uniform Gateaux differentiability
Summary:
We give a characterization of $K$-weakly precompact sets in terms of uniform Gateaux differentiability of certain continuous convex functions.
References:
[1] Bator E.M., Lewis P.W.:
Weak precompactness and the weak RNP. Bull. Polish Acad. Sci. Math. 37 (1989), 443-452.
MR 1101905 |
Zbl 0767.46011
[2] Fitzpatrick S.P.:
Separably related sets and the Radon-Nikodym property. Illinois J. Math. 29 (1985), 229-247.
MR 0784521 |
Zbl 0546.46009
[3] Matsuda M.:
A characterization of Pettis sets in terms of the Bourgain property. Math. Japon. 41 (1995), 433-439.
MR 1326976 |
Zbl 0842.46012
[4] Matsuda M.:
On localized weak precompactness in Banach spaces. Publ. RIMS, Kyoto Univ. 32 (1996), 473-491.
MR 1409798 |
Zbl 0863.46010
[5] Rosenthal H.:
A characterization of Banach spaces containing $l_1$. Proc. Nat. Acad. Sci. 71 (1974), 2411-2413.
MR 0358307 |
Zbl 0297.46013