Previous |  Up |  Next

Article

Keywords:
usco mapping; minimal mapping; Stegall class
Summary:
We prove several stability properties for the class of compact Hausdorff spaces $T$ such that $C(T)$ with the weak or the pointwise topology is in the class of Stegall. In particular, this class is closed under arbitrary products.
References:
[AP] Arhangel'skii A.V., Ponomarev V.I.: Osnovy Obshchei Topologii v Zadachah i Uprazhneniah (in Russian). Moskva, 1974. MR 0445439
[B1] Bouziad A.: Une classe d'espaces co-Namioka. C.R. de l'Acad. des Sci., Paris, t.310, série I, 1990, pp.779-782. MR 1054296
[B2] Bouziad A.: The class of co-Namioka compact spaces is stable under product. Proc. Amer. Math. Soc. 194 3 (1996), 983-986. MR 1326999 | Zbl 0844.54016
[Fa] Fabian M.: Gâteaux Differentiability of Convex Functions and Topology. Weak Asplund Spaces. John Wiley & Sons, Inc., 1997. MR 1461271 | Zbl 0883.46011
[JR] Jayne J.E., Rogers C.A.: Borel selectors for upper semi-continuous set-valued maps. Acta Math. 56 (1985), 41-7. MR 0793237 | Zbl 0588.54020
[KO] Kenderov P.S., Orihuela J.: A generic factorization theorem. Mathematika 42 (1995), 56-66. MR 1346672 | Zbl 0827.54012
[K] Kortezov I.S.: Fragmentability of function spaces. preprint.
[Ox] Oxtoby J.O.: The Banach-Mazur game and Baire category theorem. in: Contributions to the Theory of Games, vol.III, Annals of Math. Studies 39, Princeton, N.J., 1957, pp.159-163. MR 0093741
[St] Stegall Ch.: A class of topological spaces and differentiability. Vorlesungen aus dem Fachbereich Mathematik der Universität Essen 10 (1983), 63-77. MR 0730947
Partner of
EuDML logo