Previous |  Up |  Next

Article

Keywords:
Banach space; nearly uniform smoothness; finite dimensional decomposition; Banach-Saks property; fixed point property
Summary:
An infinite dimensional counterpart of uniform smoothness is studied. It does not imply reflexivity, but we prove that it gives some $l_p$-type estimates for finite dimensional decompositions, weak Banach-Saks property and the weak fixed point property.
References:
[1] Banaś J.: Compactness conditions in the geometric theory of Banach spaces. Nonlinear Anal. 16 (1990), 669-682. MR 1097324
[2] Banaś J., Fraczek K.: Conditions involving compactness in geometry of Banach spaces. Nonlinear Anal. 20 (1993), 1217-1230. MR 1219238
[3] Banaś J., Goebel K.: Measures of Noncompactness in Banach Spaces. Marcel Dekker New York (1980). MR 0591679
[4] van Dulst D.: Reflexive and Superreflexive Banach Spaces. Mathematisch Centrum Amsterdam (1978). MR 0513590 | Zbl 0412.46006
[5] García Falset J.: Stability and fixed points for nonexpansive mappings. Houston J. Math 20 (1994), 495-505. MR 1287990
[6] García Falset J.: The fixed point property in Banach spaces with NUS-property. preprint.
[7] Goebel K., Sȩkowski T.: The modulus of noncompact convexity. Ann. Univ. Mariae Curie-Skłodowska, Sect. A 38 (1984), 41-48. MR 0856623
[8] Huff R.: Banach spaces which are nearly uniformly convex. Rocky Mountain J. Math. 10 (1980), 743-749. MR 0595102 | Zbl 0505.46011
[9] James R.C.: Bases and reflexivity of Banach spaces. Ann. of Math. 52 (1950), 518-527. MR 0039915 | Zbl 0039.12202
[10] James R.C.: Uniformly non-square Banach spaces. Ann. of Math. 80 (1964), 542-550. MR 0173932 | Zbl 0132.08902
[11] James R.C.: Super-reflexive spaces with bases. Pacific J. Math. 41 (1972), 409-419. MR 0308752 | Zbl 0235.46031
[12] Johnson W.B., Zippin M.: On subspaces of quotients of ${(\sum G_n)}_{l_p}$ and ${(\sum G_n)}_{c_0}$. Israel J. Math. 13 (1972), 311-316. MR 0331023
[13] Lindenstrauss J., Tzafriri L.: Classical Banach Spaces I. Sequence Spaces. Springer-Verlag New York (1977). MR 0500056 | Zbl 0362.46013
[14] Prus S.: Nearly uniformly smooth Banach spaces. Boll. U.M.I. (7) 3-B (1989), 507-521. MR 1010520
[15] Prus S.: Banach spaces and operators which are nearly uniformly convex. to appear. MR 1444685 | Zbl 0886.46017
[16] Rosenthal H.P.: A characterization of Banach spaces containing $l_1$. Proc. Nat. Acad. Sci. (USA) 71 (1974), 2411-2413. MR 0358307 | Zbl 0297.46013
[17] Sȩkowski T., Stachura A.: Noncompact smoothness and noncompact convexity. Atti. Sem. Mat. Fis. Univ. Modena 36 (1988), 329-338. MR 0976047
[18] Zippin M.: A remark on bases and reflexivity in Banach spaces. Israel J. Math. 6 (1968), 74-79. MR 0236677 | Zbl 0157.20101
Partner of
EuDML logo