[1] Banaś J.:
Compactness conditions in the geometric theory of Banach spaces. Nonlinear Anal. 16 (1990), 669-682.
MR 1097324
[2] Banaś J., Fraczek K.:
Conditions involving compactness in geometry of Banach spaces. Nonlinear Anal. 20 (1993), 1217-1230.
MR 1219238
[3] Banaś J., Goebel K.:
Measures of Noncompactness in Banach Spaces. Marcel Dekker New York (1980).
MR 0591679
[4] van Dulst D.:
Reflexive and Superreflexive Banach Spaces. Mathematisch Centrum Amsterdam (1978).
MR 0513590 |
Zbl 0412.46006
[5] García Falset J.:
Stability and fixed points for nonexpansive mappings. Houston J. Math 20 (1994), 495-505.
MR 1287990
[6] García Falset J.: The fixed point property in Banach spaces with NUS-property. preprint.
[7] Goebel K., Sȩkowski T.:
The modulus of noncompact convexity. Ann. Univ. Mariae Curie-Skłodowska, Sect. A 38 (1984), 41-48.
MR 0856623
[8] Huff R.:
Banach spaces which are nearly uniformly convex. Rocky Mountain J. Math. 10 (1980), 743-749.
MR 0595102 |
Zbl 0505.46011
[12] Johnson W.B., Zippin M.:
On subspaces of quotients of ${(\sum G_n)}_{l_p}$ and ${(\sum G_n)}_{c_0}$. Israel J. Math. 13 (1972), 311-316.
MR 0331023
[13] Lindenstrauss J., Tzafriri L.:
Classical Banach Spaces I. Sequence Spaces. Springer-Verlag New York (1977).
MR 0500056 |
Zbl 0362.46013
[14] Prus S.:
Nearly uniformly smooth Banach spaces. Boll. U.M.I. (7) 3-B (1989), 507-521.
MR 1010520
[16] Rosenthal H.P.:
A characterization of Banach spaces containing $l_1$. Proc. Nat. Acad. Sci. (USA) 71 (1974), 2411-2413.
MR 0358307 |
Zbl 0297.46013
[17] Sȩkowski T., Stachura A.:
Noncompact smoothness and noncompact convexity. Atti. Sem. Mat. Fis. Univ. Modena 36 (1988), 329-338.
MR 0976047
[18] Zippin M.:
A remark on bases and reflexivity in Banach spaces. Israel J. Math. 6 (1968), 74-79.
MR 0236677 |
Zbl 0157.20101