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On infinite dimensional uniform

smoothness of Banach spaces

Stanis law Prus

Abstract. An infinite dimensional counterpart of uniform smoothness is studied. It does
not imply reflexivity, but we prove that it gives some lp-type estimates for finite dimen-
sional decompositions, weak Banach-Saks property and the weak fixed point property.

Keywords: Banach space, nearly uniform smoothness, finite dimensional decomposition,
Banach-Saks property, fixed point property

Classification: 46B20, 47H10

Introduction

The notion of nearly uniform convexity for Banach spaces was introduced in [8].
It is an infinite dimensional counterpart of the classical uniform convexity. Inde-
pendently an equivalent property appeared in [7]. The dual property was studied
in [17] and [14]. The authors of the first paper called it noncompactly uniform
smoothness (NUS in short). In the second paper the name nearly uniform smooth-
ness was used. Let us recall that uniformly smooth spaces are NUS and NUS
implies reflexivity.
In [17] the authors introduced also a weak version of NUS called NUS∗. For

reflexive spaces NUS∗ is equivalent to NUS. The space c0 is an example of a NUS
∗

space which is not NUS. NUS∗ was further considered in [1] and [2]. However the
authors of these papers used the name NUS instead of NUS∗ which may lead to
some confusion. In this paper we will follow the terminology of [17].
In [14] a characterization of NUS was given. We use a similar idea to find

a characterization of NUS∗. It allows us to establish some properties of NUS∗

spaces. For instance we prove that every finite dimensional decomposition in
such a space with the decomposition constant close to one has a blocking which
satisfies lp-type estimates. Analyzing the special case of the space c0, we show
that every finite dimensional decomposition in this space with the decomposition
constant less than 3

2 is shrinking. We also prove that NUS
∗ spaces have the weak

Banach-Saks property and the weak fixed point property.

1. Basic definitions

Let X be a Banach space. By BX and SX we denote its closed unit ball and unit
sphere respectively. Let us take an element x ∈ SX and a positive scalar δ. We
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put
S∗(x, δ) = {x∗ ∈ BX∗ : x∗(x) ≥ 1− δ}.

Let A be a bounded subset of X . Its Kuratowski measure of noncompactness
α(A) is defined as the infimum of all numbers d > 0 such that A may be covered
by finitely many set of diameters smaller than d (compare to [3]). Now we can
recall a definition from [17]. A Banach space X is said to be NUS∗ provided that
for every ǫ > 0 there exists δ > 0 such that if x ∈ SX , then

α(S∗(x, δ)) ≤ ǫ.

In the sequel we will also need basic facts concerning finite dimensional decom-
positions. Let (Xn) be a sequence of finite dimensional subspaces of a Banach
space X . It is called a finite dimensional decomposition (FDD in short) of X if
each element x ∈ X has a unique expansion

x =

∞
∑

n=1

xn,

where xn ∈ Xn for every n. Then we put Snx = xn. This formula gives us a
bounded linear projection Sn of X onto Xn. Moreover,

c = sup

{
∥

∥

∥

∥

∥

n
∑

k=1

Sk

∥

∥

∥

∥

∥

: n ∈ N

}

is finite (see [13] p. 47). The constant c is called the decomposition constant of
(Xn). Clearly c ≥ 1. Let x be a nonzero element of the space X . The element x

is said to be a block of (Xn) if the set D = {n : Snx 6= 0} is finite. The interval

ran (x) = {n : minD ≤ n ≤ maxD}

is called the range of the block x. We say that (xn) is a sequence of successive
blocks if each xn is a block and max ran (xk) < min ran (xk+1) for every k.
Let us fix p ≥ 1. We say that an FDD (Xn) satisfies p-estimates provided that

there is a constant C such that
∥

∥

∥

∥

∥

n
∑

k=1

yk

∥

∥

∥

∥

∥

≤ C

(

n
∑

k=1

‖yk‖
p

)
1

p

for all finite sequences of blocks y1, . . . , yn with pairwise disjoint ranges. In case
p =∞ one should replace the right hand side expression by max1≤k≤n ‖yk‖.
A sequence of subspaces (Yk) is called a blocking of an FDD (Xn) if there

exists an increasing sequence of integers (nk) such that n1 = 0 and

Yk = Xnk+1 + · · ·+Xnk+1
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for every k. The blocking (Yk) is also an FDD and its decomposition constant
does not exceed the decomposition constant of (Xn).
Let (Xn) be an FDD of a subspace Y of a Banach space X . In this case we say

that (Xn) is an FDD in X . An FDD (Xn) in a space X is said to be shrinking
if the sequence (S∗

n(Y
∗)) is an FDD of the space dual to the closed linear span

Y of
⋃∞

n=1 Xn. If an FDD (Xn) has a blocking (Yk) which satisfies p-estimates
with p > 1, then (Xn) is shrinking (compare to [11]).
Using an idea from [14], one can easily obtain the following result.

Theorem 1.1. Let (Xn) be an FDD in a Banach space X . Assume that there is

a constant d < 2 such that if (xn) is a sequence of successive blocks in BX , then

‖x1 + xm‖ ≤ d

for some m > 1. Then for every p > 1 such that dp < 2 there exists a blocking
(Yk) of (Xn) which satisfies p-estimates. In particular (Xn) is shrinking.

Having a sequence of nonzero elements (xn) of a space X , one can consider
the sequence (Xn), where Xn is the subspace spanned by the element xn. The
sequence (xn) is a basic sequence if the corresponding sequence (Xn) is an FDD
in X . The decomposition constant of (Xn) is called the basic constant of (xn).

2. Main results

Theorem 2.1. A Banach space X is NUS∗ if and only if for every ǫ > 0 there
exists η > 0 such that if 0 < t < η and (xn) is a sequence in BX , then

‖x1 + t(xm − xn)‖ ≤ 1 + ǫt

for some integers n > m > 1.

Proof: Let us assume that a Banach space X has the following property. There
is a constant ǫ > 0 such that for every η > 0 there exist a positive number t < η

and a sequence (xn) in BX for which

(1) ‖x1 + t(xm − xn)‖ > 1 + ǫt

whenever n > m > 1. Clearly we can assume that ǫ < 2.

Let us take δ ∈ (0, 1). Our assumption gives us a positive number t < δ
2−ǫ and

a sequence (xn) in BX which satisfies condition (1). Let (n
1
k) be the sequence of all

positive integers. We choose a norm-one functional x∗1 with x∗1(x1+ t(x2 −x3)) =

‖x1 + t(x2 − x3)‖. There exists an increasing sequence of positive integers (n
2
k)

such that |x∗1(xn2i
− xn2j

)| < ǫ
2 for all i, j. Now we take a functional x∗2 ∈ SX∗

for which x∗2(x1 + t(xn2
2
− xn2

3
)) = ‖x1+ t(xn2

2
− xn2

3
)‖ and a subsequence (n3

k) of

(n2
k) with |x∗2(xn3i

− xn3j
)| < ǫ

2 for all i, j.
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Proceeding in this way, we obtain a sequence (x∗n) in SX∗ and a family of
increasing sequences (ni

k)k≥1 such that

(2) x∗k(x1 + t(xnk
2
− xnk

3
)) = ‖x1 + t(xnk

2
− xnk

3
)‖

and
|x∗k(xni

2
− xni

3
)| <

ǫ

2

for every k and i > k.
From (1) and (2) it follows that 1 + ǫt < x∗k(x1) + 2t for each k. Consequently

x∗k(x) > 1− (2− ǫ)t > 1− δ,

where x = 1
‖x1‖x1. Moreover (1) and (2) show that 1 + ǫt < 1 + tx∗k(xnk

2
− xnk

3
).

Hence ǫ < x∗k(xnk
2
− xnk

3
) for every k. It follows that if i < j then

‖x∗i − x∗j‖ ≥
1

2
(x∗j − x∗i )(xn

j
2

− x
n

j
3

) >
ǫ

4
.

We therefore see that α(S∗(x, δ)) ≥ ǫ
4 . This shows that the space X is not NUS∗.

Let us in turn assume that a Banach space X is not NUS∗. Then there exists
ǫ > 0 such that for every δ > 0 one can find an element x1 ∈ SX for which

(3) α(S∗(x1, δ)) > ǫ.

Given η > 0, we put t = η
2 . By our assumption there is x1 ∈ SX for which

estimate (3) holds with δ = ǫt
32 . Consequently, we can pick a sequence (x

∗
n) in

BX∗ so that x∗n(x1) ≥ 1− δ for every n and ‖x∗m − x∗n‖ ≥ ǫ
2 whenever m 6= n.

Let x∗ be a weak∗ cluster point of the set {x∗n}. We can assume that ‖y
∗
n‖ ≥ ǫ

4 ,
where y∗n = x∗n − x∗ for each n ≥ 1. So there is an element yn ∈ SX such that

y∗n(−yn) > 7ǫ
32 .

We put n1 = 1. Since zero is a weak
∗ cluster point of {y∗n}, one can choose

n2 > n1 so that |y
∗
n2(yn1)| < ǫ

8 . Continuing this inductive procedure, we obtain an
increasing sequence (nk) of positive integers such that |y

∗
nk
(yni)| < ǫ

8 if 1 ≤ i < k.
Moreover, passing to a subsequence again, we can assume that |x∗(yni−ynj )| < ǫ

32
for all i, j.
Let us now set xk = ynk

for k = 2, 3, . . . . If i < j then

‖x1 + t(xi − xj)‖ > x∗nj
(x1) + tx∗nj

(xi − xj)

≥ 1− δ + ty∗nj
(xi)− ty∗nj

(xj) + tx∗(xi − xj)

≥ 1− δ +
ǫ

16
t

= 1 +
ǫ

32
t . �
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Clearly a closed subspace of a NUS∗ space has the same property. From The-
orem 2.1 it follows in particular that also quotient spaces of a NUS∗ space are
NUS∗.
Given a Banach space X and a scalar t ≥ 0 we put

RX(t) = sup{lim inf
n→∞ ‖x1 + txn‖},

where the supremum is taken over all weakly null sequences (xn) in BX . Clearly

RX (t) ≥ 1 and one can easily show that
1
t (RX(t)−1) is a nondecreasing function

of t > 0.
In [14] NUS Banach spaces were characterized. Now we can obtain a similar

result for NUS∗ spaces.

Theorem 2.2. A Banach space X is NUS∗ if and only if X does not contain an

isomorphic copy of l1 and

lim
t→0

1

t
(RX (t)− 1) = 0.

Proof: Let X be a NUS∗ space. By Theorem 2.1 for every ǫ > 0 there is t > 0
such that if (yn) is a sequence in BX , then

‖y1 + t(yi − yj)‖ ≤ 1 +
ǫ

2
t

for some j > i > 1.
Let t1 correspond to ǫ = 1. We put γ = t1

1+2t1
. If X contained an isomorphic

copy of l1, there would exist a sequence (yn) in BX such that

(1− γ)

m
∑

k=1

|ak| ≤

∥

∥

∥

∥

∥

m
∑

k=1

akyk

∥

∥

∥

∥

∥

for all real scalars a1, . . . , am (see [10]). By our assumption we obtain integers

j > i > 1 for which ‖y1 + t1(yi − yj)‖ ≤ 1 + 1
2 t1. But

‖y1 + t1(yi − yj)‖ ≥ (1− γ)(1 + 2t1) = 1 + t1

which is a contradiction.
Let us now suppose that

lim
t→0

1

t
(RX (t)− 1) > 0.

Then there exists a constant ǫ > 0 such that for each t > 0 we can find a weakly
null sequence (xn) in BX with

(4) ‖x1 + txn‖ > 1 + ǫt
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for every n > 1. But

‖x1 + txm‖ ≤ lim inf
n→∞

‖x1 + t(xm − xn)‖

for every m > 1. Consequently, we can choose an increasing sequence (nk) such
that

‖x1 + txni‖ ≤ ‖x1 + t(xni − xnj )‖+
ǫ

4
t

whenever i < j. Therefore, Theorem 2.1 gives us an index i for which

‖x1 + txni‖ ≤ 1 +
ǫ

2
t.

This contradicts (4).
Let us assume in turn that a space X does not contain an isomorphic copy of

l1 and

lim
t→0

1

t
(RX (t)− 1) = 0.

We take an arbitrary sequence (yn) in BX . By the well known theorem of Rosen-
thal [16] we can assume that (yn) is weakly Cauchy. Then (yn−yn+1) is a weakly
null sequence in 2BX . Our assumption shows for every ǫ > 0 there is η > 0 such
that if 0 < t < η then there exists m > 1 with

‖y1 + t(ym − ym+1)‖ ≤ 1 + ǫt.

In view of Theorem 2.1 this implies that X is NUS∗. �

Let X be a Banach space with an FDD (Xn). From Theorem 2.2 it follows
that if (Xn) satisfies p-estimates with p > 1, then X is NUS∗ in some equivalent
norm (see [15]). Theorem 2.2 gives us also the next corollary.

Corollary 2.3. Let X be a NUS∗ Banach space. Then there exists p > 1
such that every shrinking FDD (Xn) in X has a blocking (Yk) which satisfies
p-estimates.

Proof: Let (Xn) be a shrinking FDD in the space X . If (xn) is a sequence of
successive blocks of (Xn) such that xn ∈ BX for every n, then (xn) is weakly
null (compare to [13] p. 8). From Theorem 2.2 it follows that there is a positive
constant t < 1 which does not depend on the sequence, such that ‖x1 + txm‖ <

1 + 1
2 t for some m > 1. Hence

‖x1 + xm‖ ≤ ‖x1 + txm‖+ 1− t < d,

where d = 2− t
2 . By Theorem 1.1, this gives us the conclusion of the corollary.

�

In [18] it was proved that a Banach space X is reflexive if and only if every
basic sequence in X is shrinking. Our next result shows that in NUS∗ spaces
basic sequences with small basic constants are shrinking.
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Theorem 2.4. Let X be a NUS∗ Banach space. Then there exists a constant
M > 1 such that if (Xn) is an FDD in X with the decomposition constant less

than M , then (Xn) is shrinking.

Proof: Let X be a NUS∗ space. By Theorem 2.2 there is a positive number
t < 1 such that

1

t
(RX (2t)− 1) < 1.

We putM = (1+t)(RX(2t))
−1. Let (Xn) be an FDD inX with the decomposition

constant c < M . We consider a sequence of successive blocks (xn) such that
xn ∈ BX for every n. Passing to a subsequence we can assume that (xn − xn+1)
converges weakly to zero. Then

lim inf
n→∞

‖x1 + txn‖ ≤ c lim inf
n→∞

‖x1 + t(xn − xn+1)‖ ≤ cRX(2t).

Hence
‖x1 + xm‖ ≤ cRX(2t) + 1− t < 2.

Now the conclusion follows from Theorem 1.1. �

We have actually shown that each FDD (Xn) with the decomposition constant
c < M has a blocking which satisfies some p-estimates, where p > 1 depends on c.
Corollary 2.3 gives us the following improvement of this result.

Corollary 2.5. Let X be a NUS∗ Banach space. Then there exist constants
M, p > 1 such that each FDD in X with the decomposition constant less than M

admits a blocking with p-estimates.

Let us assume that (Xn) is an FDD of a Banach space X . Using an argument
from [12] one can show that if (Xn) satisfies some p-estimates then each shrinking
FDD in a quotient space of X has a blocking which satisfies p-estimates, too.

Examples.

1. In [17] it was observed that the space c0 is NUS
∗. In case X = c0 we can put

t = 1
2 in the proof of Theorem 2.4. This gives M = 3

2 . Therefore, each FDD in

c0 with the decomposition constant less than
3
2 has a blocking with ∞-estimates.

Let (Zn) be a sequence of finite dimensional Banach spaces. Using the same
idea, one can actually extend this result to the case of a quotient space of

( ∞
∑

n=1

Zn

)

c0

.

It is not clear if 3
2 is the greatest possible value of the constantM for the space

c0. Considering the summing basis of c0 (see [4, p. 74]), we obtain the estimate
M ≤ 2.
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2. Let J be James’ space (see [9]). We consider the space J with the following
equivalent norm:

‖(xn)‖ = sup

(

m
∑

i=1

(xn2i−1 − xn2i)
2 + 2(xn2m+1)

2

)
1

2

,

where (xn) ∈ J and the supremum is taken over all sequences 1 ≤ n1 < n2 <

· · · < n2m+1.
Let x = (xn), y = (yn) be elements of J . It is easy to check that if there is

k > 1 such that xn = 0 for all n > k and yn = 0 for all n ≤ k, then

‖x+ y‖2 ≤ ‖x‖2 + 2‖y‖2.

It follows that the FDD corresponding to the standard basis of J satisfies 2-

estimates. Moreover one can easily show that RJ (t) = (1 + 2t
2)
1

2 for every
t ≥ 0. From Theorem 2.2 we now see that J is NUS∗. For this space we can put
M = 3

2
√

2
. Let us also mention that J is isomorphic to J∗∗, but it is not reflexive.

Therefore by a result from [17] J is not a dual space.

Let us recall that a Banach space X has the weak Banach-Saks property if
each sequence (xn) converging weakly to x admits a subsequence (xnk

) whose

arithmetic means 1
n

∑n
k=1 xnk

tend to x in norm.

Remark 2.6. If a Banach space X is NUS∗, then X has the weak Banach-Saks

property.

Proof: Let M, p be the constants occurring in Theorem 2.5. Clearly it suffices
to prove that each weakly null sequence (xn) has a subsequence (xnk

) such that

the means 1
n

∑n
k=1 xnk

tend to zero. This is obviously true if (xn) converges to
zero in norm. Therefore we can assume that (xn) is a weakly null sequence which
does not converge in norm. Then it has a subsequence (xnk

) which is a basic
sequence with the basic constant less than M (see [13] p. 5). From Corollary 2.5
it follows that, passing to a subsequence again, we can assume that there is a
constant C for which

∥

∥

∥

∥

∥

1

m

m
∑

k=1

xnk

∥

∥

∥

∥

∥

≤ C

(

m
∑

k=1

∥

∥

∥

∥

1

m
xnk

∥

∥

∥

∥

p
)
1

p

for every m. But the sequence (xn) is bounded. Therefore
∥

∥

∥

∥

∥

1

m

m
∑

k=1

xnk

∥

∥

∥

∥

∥

≤ C1m
1

p
−1

for some constant C1. Since p > 1, this shows that the means 1
n

∑n
k=1 xnk

converge to zero. �
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Let X be a Banach space. In [5] a coefficient R(X) was defined. In our notation
R(X) = RX(1). Next, in [6] it was proved that if R(X) < 2, then the space X

has the fixed point property for nonexpansive self-mappings of weakly compact
convex sets. Clearly R(X) ≤ RX(t) + 1− t for every t ∈ (0, 1). Therefore if

lim
t→0

1

t
(RX(t)− 1) < 1

then R(X) < 2. In particular, we obtain the following result.

Remark 2.7. Let K be a nonempty weakly compact convex subset of a NUS∗

Banach space X . Every nonexpansive mapping T : K → K has a fixed point.
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