Previous |  Up |  Next

Article

Keywords:
Banach spaces; weak uniform rotundity; K-analiticity; uniform G\^ateaux differentiability
Summary:
The dual space of a WUR Banach space is weakly K-analytic.
References:
[1] Cascales B.: On K-analytic locally convex spaces. Arch. Math. 49 (1987), 232-244. MR 0906738 | Zbl 0617.46014
[2] Cascales B., Orihuela J.: A sequential property of set-valued maps. J. Math. Anal. Appl. 156 (1991), 86-100. MR 1102599 | Zbl 0760.54013
[3] Deville R., Godefroy G., Zizler V.: Smoothness and Renormings in Banach Spaces. Longman Scientific and Technical, 1993. MR 1211634 | Zbl 0782.46019
[4] Fabian M., Godefroy G.: The dual of every Asplund admits a projectional resolution of the identity. Studia Math. 91 (1988), 141-151. MR 0985081
[5] Fabian M., Hájek P., Zizler V.: On uniform Eberlein compacta and uniformly Gâteaux smooth norms. Serdica Math. J. 23 (1997), 1001-1010. MR 1660997
[6] Fabian M., Troyanski S.: A Banach space admits a locally uniformly rotund norm if its dual is a Vasšák space. Israel J. Math. 69 (1990), 214-224. MR 1045374
[7] Godefroy G., Troyanski S., Whitfield J.H.M., Zizler V.: Smoothness in weakly compactly generated Banach spaces. J. Functional Anal. 52 (1983), 344-352. MR 0712585 | Zbl 0517.46010
[8] Hájek P.: Dual renormings of Banach spaces. Comment. Math. Univ. Carolinae 37 (1996), 241-253. MR 1398999
[9] Talagrand M.: Espaces de Banach faiblement K-analytiques. Annals of Math. 110 (1979), 407-438. MR 0554378
Partner of
EuDML logo