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Abstract. The dual space of a WUR Banach space is weakly K-analytic.
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A Banach space is said to be weakly uniformly rotund (WUR for short) if
given sequences (xn) and (yn) in the unit sphere with ‖xn + yn‖ → 2 we have
weak-limn(xn − yn) = 0. This notion has become more important since Hájek
proved that every WUR Banach space must be Asplund ([8]). To obtain this
result he uses ideas of Stegall for the equivalence between being an Asplund space
and having the Radon-Nikodym property on its dual. Using this result and the
Fabian-Godefroy ([4]) projectional resolution of the identity in the dual of an
Asplund space, Fabian, Hájek and Zizler have recently showed that for a WUR
Banach space E the dual space E∗ is a subspace of a WCG Banach space. Indeed
they proved that for a Banach space E to have an equivalent WUR norm is
equivalent to the fact that the bidual unit ball BE∗∗ , endowed with the weak-*
topology, will be a uniform Eberlein compact ([5]). Consequently they obtain that
E must be LUR renormable, too ([7]). The aim of this note is to provide a direct
proof of the fact that every WUR Banach space E has a dual space E∗ which
is weakly K-analytic. This provides a topological approach to Hájek’s result on
the Asplundness of the space E as well as the LUR renorming consequence on E

after ([6]).

In this paper, E will denote a Banach space, E∗ its dual, BE its closed unit
ball, SE its unit sphere.

Definition 1. A Banach space (E, ‖ · ‖) is said to be uniformly Gâteaux differ-
entiable (UGD for short) if for every 0 6= x ∈ E,

lim
t→0

sup
‖y‖=1

‖y + tx‖ + ‖y − tx‖ − 2

t
= 0.

The following theorem is the main result of this note:
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750 A.Moltó, V.Montesinos, J. Orihuela, S. Troyanski

Theorem 1. Let E be a Banach space such that E∗ has an equivalent (not
necessarily dual) UGD norm (in particular, let E be WUR Banach space). Then
E∗ is weakly K-analytic.

The proof is based on the following assertions.

Fact 1 (Šmulyan, see [3, Theorem II.6.7]). The Banach space E is WUR if and

only if E∗ is UGD.

Theorem 2 (Talagrand [9]). LetK be a compact space. The following assertions
are equivalent:

1. C(K) is weakly K-analytic;

2. there is an increasing mapping σ → Sσ from N
N (endowed with the prod-

uct order) in the family of compact subsets of C(K) endowed with the

topology of pointwise convergence, such that
⋃

{Sσ : σ ∈ N
N} separates

points of K.

Remark 1. In [1] the validity of the previous theorem for an arbitrary topological
space is studied. In particular, for every subset W of a Banach space E it follows
that (W,weak) is K-analytic if and only if W =

⋃

{Sσ : σ ∈ N
N} and every Sσ is

weakly compact with Sσ ⊂ Sγ whenever σ ≤ γ in the product order. This will be
the only tool necessary here from the theory of K-analytic spaces.

Remark 2. From Theorem 1 and [6], see also [3, p. 296], we get that every WUR
Banach space admits an equivalent LUR norm.

Remark 3. From Theorem 1 it follows the Hájek’s ([8]) result asserting that ev-
ery WUR Banach space is Asplund. Indeed, if we assume that E is also separable
the K-analytic structure of (E∗,weak) should imply that E∗ is separable too. Let
us explain here an easy argument following ideas from [2]: Assume (E∗,weak)

is K-analytic. Let T be an usco mapping from N
N into the set of subsets of

(E∗,weak) with T (NN) = E∗ (T can be assumed to be increasing by Remark 1).

Let P be the natural projection from (E∗,weak∗) × N
N onto (E∗,weak). Con-

sider the restriction Q of P to Σ := {(x, α) : (x, α) ∈ E∗ × N
N, x ∈ T (α)}.

It is easy to prove that Q is continuous: let (x∗i , αi) be a net in Σ such that

(x∗i , αi) → (x, α) ∈ Σ. As αi → α we can find β ∈ N
N such that α ≤ β and

αi ≤ β for all i ∈ N. Then xi ∈ T (β), x ∈ T (β), and xi
weak∗
−−−−→ x, hence

xi
weak
−−−−→ x. Therefore E∗ is separable too. See also Theorem 2.4 in [9]. With

more generality, any submetrizable topological space X is analytic if and only if
there is a family of compact sets {Sσ : σ ∈ N

N} in X , Sσ ⊂ Sγ whenever σ ≤ γ

in the product order and X =
⋃

{Sσ : σ ∈ N
N}, [2, Theorem 7].

Proof of Theorem 1: It is well known that E admits an equivalent WUR
norm. Then E∗ has an equivalent dual UGD norm. Then given x∗ ∈ SE∗ and
ǫ > 0, there exists δǫ(x

∗) > 0 such that
‖y∗ + tx∗‖+ ‖y∗ − tx∗‖ ≤ 2 + ǫ|t|, if |t| < δǫ(x

∗) and y∗ ∈ SE∗ .
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Given a positive integer p define

Sp(ǫ) :=
{

x∗ ∈ SE∗ : δǫ(x
∗) >

1

p

}

.

Obviously,
S1(ǫ) ⊂ S2(ǫ) ⊂ . . . ⊂ Sp(ǫ) ⊂ Sp+1(ǫ) ⊂ . . .

and
⋃∞

p=1 Sp(ǫ) = SE∗ . Let α = (an) ∈ N
N. Define

Sα :=

∞
⋂

n=1

San

(

1

n

)

.

We have
SE∗ =

⋃

{

Sα : α ∈ N
N
}

,

and
Sα ⊂ Sβ , whenever α = (an) ≤ β = (bn) (i.e., an ≤ bn, ∀n).

This sets will give us the K-analytic structure of E∗ in the weak topology. Indeed,
we have the following

Claim 1. Given x∗∗ ∈ BE∗∗ , ǫ > 0 and α = (an) ∈ N
N, there is x ∈ BE such

that
|〈x∗∗ − x, x∗〉| < ǫ, ∀x∗ ∈ Sα.

Proof of the claim: Find n ∈ N such that 3n < ǫ. Pick y∗ ∈ SE∗ such that

〈x∗∗, y∗〉 > 1−
1

nan
.

Find x ∈ BE such that

〈x, y∗〉 > 1−
1

nan
.

Let x∗ ∈ Sα. Since x∗ ∈ San
( 1n )

‖y∗ +
1

an
x∗‖+ ‖y∗ −

1

an
x∗‖ ≤ 2 +

1

nan
.

In particular we have

(1) 〈x∗∗, y∗ +
1

an
x∗〉+ 〈x, y∗ −

1

an
x∗〉 ≤ 2 +

1

nan

hence

1

an
〈x∗∗ − x, x∗〉 ≤ 2 +

1

nan
− 〈x∗∗, y∗〉 − 〈x, y∗〉 <

3

nan
<

ǫ

an
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and so

〈x∗∗ − x, x∗〉 < ǫ, ∀x∗ ∈ Sα.

By interchanging x∗∗ and x in (1), we get

|〈x∗∗ − x, x∗〉| < ǫ, ∀x∗ ∈ Sα

and this proves the claim.

To finish the proof of the Theorem, observe that, by the claim, each Sα is
weakly relatively compact since it is weak∗-relatively compact. Thus, we have

SE∗ ⊂
⋃

{Sα
weak

: α ∈ N
N} :=W

and W is weakly K-analytic in E∗ (Theorem 2 and Remark 1).

Consider the map

(W,weak)× [0,+∞[
Ψ
−→ (E∗,weak)

given by Ψ(x∗, t) := t.x∗. Ψ is continuous, [0,+∞[ is a Polish space, (W,weak)×
[0,+∞[ is K-analytic and Ψ(W×[0,+∞[) = E∗, so (E∗,weak) is itself K-analytic.
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[5] Fabian M., Hájek P., Zizler V., On uniform Eberlein compacta and uniformly Gâteaux
smooth norms, Serdica Math. J. 23 (1997), 1001–1010.

[6] Fabian M., Troyanski S., A Banach space admits a locally uniformly rotund norm if its
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