Previous |  Up |  Next

Article

Keywords:
Krätzel integral transformation; $L_p$-spaces; distributions
Summary:
An integral transform denoted by ${\Cal L}_{\nu }^{(\rho )}$ that generalizes the well-known Laplace and Meijer transformations, is studied in this paper on certain spaces of generalized functions introduced by A.C. McBride by employing the adjoint method.
References:
[1] Barrios J.A., Betancor J.J.: On a generalization of Laplace transform due to E. Krätzel. J. Inst. Math. & Comp. Sci. (Math. Ser.) 3 (4) (1990), 273-291. MR 1104376 | Zbl 0844.44002
[2] Barrios J.A., Betancor J.J.: A Real Inversion Formula for the Krätzel's Generalized Laplace Transform. Extracta Mathematicae 6 (2) (1991), 55-57.
[3] Erdelyi A., Magnus W., Oberhettinger F., Tricomi F.: Tables of Integral Transforms, Vol. II. McGraw-Hill, New York, 1954. MR 0065685 | Zbl 0058.34103
[4] Kilbas A.A., Bonilla B., Rivero M., Rodríguez J., Trujillo J.: Bessel type function and Bessel type integral transform on spaces ${\Cal F}_{p,\mu }$ and ${\Cal F}_{p,\mu }^{^{\prime }}$. to appear.
[5] Krätzel E.: Eine verallgemeinerung der Laplace- und Meijer-transformation. Wiss. Z. Univ. Jena Math. Naturw. Reihe 5 (1965), 369-381. MR 0231142
[6] Krätzel E.: Die faltung der L-transformation. Wiss. Z. Univ. Jena Math. Naturw. Reihe 5 (1965), 383-390. MR 0231143
[7] Krätzel E.: Integral transformations of Bessel-type. Proceeding of International Conference on Generalized Functions and Operational Calculus, Varna, 1975, pp.148-155. MR 0547343
[8] Krätzel E., Menzer H.: Verallgemeinerte Hankel-Funktionen. Pub. Math. Debrecen 18, fasc. 1-4 (1973), 139-148. MR 0310309
[9] McBride A.C.: Fractional Calculus and Integral Transforms of Generalized Functions. Res. Notes Math., 31, Pitman Press, San Francisco, London, Melbourne, 1979. MR 0550881 | Zbl 0423.46029
[10] McBride A.C.: Fractional powers of a class ordinary differential operators. Proc. London Math. Soc., Ser. 3 45 (1982), 3 519-546. MR 0675420
[11] Rao G.L.N., Debnath L.: A generalized Meijer transformation. Int. J. Math. & Math. Sci. 8:2 (1985), 359-365. MR 0797835 | Zbl 0597.46036
[12] Zemanian A.H.: A distributional $K$ transformation. Siam J. Appl. Math. 14 6 (1966), 1350-1365.
[13] Zemanian A.H: Generalized Integral Transformation. Interscience Publisher, New York, 1968. MR 0423007
Partner of
EuDML logo