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The L
(ρ)
ν - transformation on McBride’s

spaces of generalized functions

D.I. Cruz-Báez, J. Rodŕıguez

Abstract. An integral transform denoted by L
(ρ)
ν that generalizes the well-known Laplace

and Meijer transformations, is studied in this paper on certain spaces of generalized
functions introduced by A.C. McBride by employing the adjoint method.

Keywords: Krätzel integral transformation, Lp-spaces, distributions

Classification: 44A15, 46F12

1. Introduction

E. Krätzel [5] introduced a generalized Laplace transformation defined by

(1.1) L
(ρ)
ν (f)(x) =

∫

∞

0
λ
(ρ)
ν (xy)f(y) dy, x > 0,

where

(1.2) λ
(ρ)
ν (x) =

(2π)(ρ−1)/2ρ1/2

Γ(ν + 1− (1/ρ))

(

x

ρ

)ρν ∫ ∞

1
(tρ − 1)ν−(1/ρ)e−xt dt, x > 0

for ρ ∈ N and Re ν > −1 + 1/ρ. He studied in a series of papers ([5], [6] and [7])

the main classical properties of L
(ρ)
ν . J.J. Betancor and J. Barrios ([1] and [2])

continued the investigations of E. Krätzel, and they established that λ
(ρ)
ν (z) is a

solution of a differential equation of fractional order. In [11] the L
(ρ)
ν -transform

is investigated on certain spaces of distributions following Zemanian by means of

the kernel method. We will consider the L
(ρ)
ν transform on McBride’s spaces of

test functions Fp,µ and define it on their duals F
′

p,µ by means of the method of
adjoints.

Throughout this paper ρ ∈ R and ρ > 0.

The asymptotic behaviour of λ
(ρ)
ν (x) can be found in [2]; for x → 0 we have

(1.3) λ
(ρ)
ν (x) =



















c1 + o(1), Re ν > 0,

c2 (x/ρ)ρν + o(1), Re ν = 0, ν 6= 0,

c3 log(x/ρ) + o(1), ν = 0,

c4 (x/ρ)ρν + o(1), Re ν < 0,
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where c1, c2, c3 and c4 are suitable constants, and for x → ∞,

(1.4) λ
(ρ)
ν (x) = O(e−x).

The following property will be useful in the sequel ([5])

(1.5) Dλ
(ρ)
ν (z) = −

(

z

ρ

)ρ−1

λ
(ρ)
ν−1(z).

Here, D denotes ordinary differentiation.

2. Krätzel transform on spaces Fp,µ and F
′

p,µ

A.C. McBride [9] defines Fp,µ as follows, let µ ∈ C,

Fp,µ =
{

ϕ ∈ C∞(R+) : xk dk

dxk
(x−µϕ(x)) ∈ Lp(R+), ∀k ∈ N

}

,

where 1 ≤ p < ∞ and

F∞,µ =
{

ϕ ∈ C∞(R+) : xk dk

dxk
(x−µϕ(x))→ 0 as x → 0 and

x → ∞, ∀k ∈ N
}

,

where p = ∞. Fp,µ is a complete countable multinormed space (Fréchet space)
equipped with the topology generated by the family of seminorms in Fp,µ given
by

γ
p,µ
k (ϕ) =

∥

∥

∥

∥

∥

xk dk

dxk
(x−µϕ)

∥

∥

∥

∥

∥

p

(k ∈ N; 1 ≤ p ≤ ∞, µ ∈ C).

In [10] we can see that the space Fp,µ is closely connected with the Banach space

Lp,µ of Lebesgue measurable functions f(x) such that ‖f‖p,µ = ‖x−µf‖p < ∞.

F
′

p,µ is the space of the continuous linear functionals on Fp,µ equipped with the
weak topology.

Next, we establish a series of results for finally to define the L
(ρ)
ν -transformation

by using the adjoint method.

Proposition 2.1. Let 1 ≤ p ≤ ∞, µ, ν ∈ C, ρ > 0, 1/p+ 1/p
′

= 1 and

(2.1) Reµ > −
1

p
′
−min {0, ρRe ν} .

Then L
(ρ)
ν is a continuous linear mapping from Lp,µ into Lp,2/p−µ−1 and from

Fp,µ into Fp,2/p−µ−1.

Proof: By (1.3) and (1.4) the integral
∫

∞

0
x
Reµ− 1

p

∣

∣

∣
λ
(ρ)
ν (x)

∣

∣

∣
dx < ∞
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converges provided that (21) is satisfied. Then Proposition 2.1 follows from [9,
pp. 158–159, Theorem 8.1 and Corollary 8.2] and the proof concludes. �

The Mellin transform (Mϕ)(s) of a suitable function ϕ(x), x > 0, is defined
by

(2.2) (Mϕ)(s) =

∫

∞

0
xs−1ϕ(x) dx.

Lemma 2.1. Let ρ > 0, ν, s ∈ C and

(2.3) Re s+min {0, ρRe ν} > 0.

Then

(2.4) M
{

λ
(ρ)
ν (x)

}

(s) = (2π)
ρ−1
2 ρ−1/2−ρν

Γ(s+ ρν)Γ
(

s
ρ

)

Γ
(

s
ρ + ν + 1− 1ρ

) .

Proof: By the asymptotic behaviour of λ
(ρ)
ν we can guarantee (2.3). By (2.2)

and (1.2) we have after changing the order of integration (Fubini’s theorem)

M
{

λ
(ρ)
ν (x)

}

=

∫

∞

0
xs−1λ

(ρ)
ν (x) dx

=
(2π)

ρ−1
2 ρ1/2−ρν

Γ
(

ν + 1− 1
ρ

)

∫

∞

0
xs+ρν−1

∫

∞

1
(tρ − 1)ν−(1/ρ)e−xt dt dx

=
(2π)

ρ−1
2 ρ1/2−ρν

Γ
(

ν + 1− 1ρ

)

∫

∞

1
(tρ − 1)ν−(1/ρ)

∫

∞

0
xs+ρν−1e−xt dx dt.

The relation Γ(z) =

∫

∞

0
τz−1e−τ dτ (Re z > 0) holds, hence

M
{

λ
(ρ)
ν (x)

}

=
(2π)

ρ−1
2 ρ1/2−ρνΓ (s+ ρν)

Γ
(

ν + 1− 1
ρ

)

∫

∞

1
(tρ − 1)ν−(1/ρ)t−s−ρν dt

= (2π)
ρ−1
2 ρ−1/2−ρν

Γ (s+ ρν) Γ
(

s
ρ

)

Γ
(

s
ρ + ν + 1− 1ρ

)

and (2.4) is proved. �

The Mellin transformM for ϕ ∈ Fp,µ is defined by

(2.5) (Mϕ) (s) =

∫

∞

0
ts−1ϕ(t) dt, Re s = 1/p− Reµ.

By [10, p. 531, Theorem 5.1], we have for 1 ≤ p ≤ 2 and µ ∈ C that M is a
continuous linear mapping from Fp,µ into Lp′ (R

+).
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Proposition 2.2. Let 1 ≤ p ≤ 2, µ, ν ∈ C, ρ > 0 and

(2.6) Reµ > −
1

p
′
−min {0, ρRe ν} , Re s =

1

p
′
+Reµ.

Then for ϕ ∈ Fp,µ we have

(2.7) M
{

L
(ρ)
ν ϕ

}

(s) = (2π)
ρ−1
2 ρ−1/2−ρν

Γ (s+ ρν) Γ
(

s
ρ

)

Γ
(

s
ρ + ν + 1− 1ρ

)Mϕ(1− s),

where s = 1p − Reµ+ it.

Proof: By Fubini’s theorem and (2.4), for a sufficiently good function ϕ ∈
C∞0 (R

+) we have

M
{

L
(ρ)
ν ϕ

}

(s) =

∫

∞

0
ys−1

∫

∞

0
λ
(ρ)
ν (xy)ϕ(x) dx dy

=

∫

∞

0
ϕ(x)

∫

∞

0
ys−1λ

(ρ)
ν (xy) dx dy.

Making the change xy = t, we get

M
{

L
(ρ)
ν ϕ

}

(s) =

∫

∞

0
x−sϕ(x) dx

∫

∞

0
ts−1λ

(ρ)
ν (t) dt

= (2π)
ρ−1
2 ρ−1/2−ρν

Γ (s+ ρν) Γ
(

s
ρ

)

Γ
(

s
ρ + ν + 1− 1

ρ

)Mϕ(1− s)

and (2.7) is proved for ϕ ∈ C∞0 (R
+). By [9, p. 18, Corollary 2.7], C∞0 (R

+) is
dense in Fp,µ and hence the relation (2.7) holds for ϕ ∈ Fp,µ. �

Theorem 2.1. Let 1 ≤ p ≤ ∞, µ, ν ∈ C, ρ > 0 and

(2.8) Reµ > −
1

p
′
−min {0, ρRe ν} .

Then we have

(2.9)

∫

∞

0

(

L
(ρ)
ν f

)

(x)ϕ(x) dx =

∫

∞

0
f(x)

(

L
(ρ)
ν ϕ

)

(x) dx

for ϕ ∈ Fp,µ, f ∈ Fp′ ,µ−1+2/p′ and ϕ ∈ Lp,µ, f ∈ Lp′ ,µ−1+2/p′ .

Proof: By Proposition 2.1 L
(ρ)
ν f and L

(ρ)
ν ϕ exist for f ∈ Fp′ ,µ−1+2/p′ and

ϕ ∈ Fp,µ, respectively, provided that (2.8) is valid. In the beginning we will prove

that the equality (2.9) is true for functions of C∞0 (R
+).



The L
(ρ)
ν - transformation on McBride’s spaces of generalized functions 449

If f, ϕ ∈ C∞0 (R
+) we obtain

∫

∞

0

(

L
(ρ)
ν f

)

(x)ϕ(x) dx =

∫

∞

0
ϕ(x) dx

∫

∞

0
λ
(ρ)
ν (yx)f(y) dy

=

∫

∞

0
f(y) dy

∫

∞

0
λ
(ρ)
ν (yx)ϕ(x) dx

=

∫

∞

0
f(y)

(

L
(ρ)
ν ϕ

)

(y) dy,

since Fubini’s theorem allows the exchange in the integration order.

Then, to prove (2.9) for ϕ ∈ Fp,µ, f ∈ Fp′ ,µ−1+2/p′ and ϕ ∈ Lp,µ, f ∈

Lp′ ,µ−1+2/p′ , it is sufficient to show that both sides of (2.9) are bounded lin-

ear functionals on Lp,µ × Lp′ ,µ−1+2/p′ . Applying the Hölder inequality and the

definition of the norm of Lp,µ we obtain
∫

∞

0

∣

∣

∣

(

L
(ρ)
ν f

)

(x)ϕ(x)
∣

∣

∣
dx =

∫

∞

0

∣

∣x−µϕ(x)
∣

∣

∣

∣

∣
xµ
(

L
(ρ)
ν f

)

(x)
∣

∣

∣
dx

≤

(
∫

∞

0

∣

∣x−µϕ(x)
∣

∣

p
dx

)1/p
(

∫

∞

0

∣

∣

∣
xµ
(

L
(ρ)
ν f

)

(x)
∣

∣

∣

p
′

dx

)1/p
′

= ‖ϕ‖p,µ

∥

∥

∥
L
(ρ)
ν f

∥

∥

∥

p
′
,−µ

.

Moreover, by Proposition 2.1 with p replaced by p
′

and µ by µ − 1 + 2/p
′

∥

∥

∥
L
(ρ)
ν f

∥

∥

∥

p′ ,−µ
≤ k ‖f‖p′ ,µ−1+2/p′ (k > 0)

and hence
∣

∣

∣

∣

∫

∞

0

(

L
(ρ)
ν f

)

(x)ϕ(x) dx

∣

∣

∣

∣

≤ k ‖ϕ‖p,µ ‖f‖p′ ,µ−1+2/p′ .

This shows that the left hand side of (2.9) is a bounded linear functional on
Lp,µ × Lp′ ,µ−1+2/p′ . The same result for the right hand side of (2.9) is proved

similarly. This completes the proof of Theorem 2.1. �

Theorem 2.1 allows us to define the generalized L
(ρ)
ν f -transform on F

′

p,µ when

1 ≤ p ≤ ∞, µ, ν ∈ C and ρ > 0, as follows. For every f ∈ F
′

p,µ the generalized

L
(ρ)
ν f -transform is defined through

(2.10) 〈L
(ρ)
ν f, ϕ〉 = 〈f,L

(ρ)
ν ϕ〉

with ϕ ∈ Fp,2/p−µ−1.

Then by Proposition 2.1 and (2.10) we arrive at the following result.
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Proposition 2.3. Let 1 ≤ p ≤ ∞, µ ∈ C, ν ∈ C, and Reµ < 1/p +

min {0, ρRe ν}. Then the operator L
(ρ)
ν is a continuous linear mapping of F

′

p,µ

into F
′

p,2/p−µ−1.

Next, we investigate compositions of the operator L
(ρ)
ν with a differential op-

erator on the spaces Fp,µ and F
′

p,µ.

Proposition 2.4. Let 1 ≤ p ≤ ∞, µ, ν ∈ C, ρ > 0, m ∈ N, 1/p+ 1/p
′

= 1 and

(2.11) Reµ > −1/p
′

−min {0, ρRe ν}+ ρm.

Then for ϕ ∈ Fp,µ

(2.12)

(

(

x

ρ

)1−ρ

D

)m

L
(ρ)
ν
{

y−ρmϕ(y)
}

(x) = (−1)mL
(ρ)
ν−m {ϕ(y)} (x).

Proof: According to Proposition 2.1 and [9, p. 21, Theorem 2.11 and p. 26, Corol-
lary 2.15] the left and right hand sides of (2.12) are continuous linear mapping
from Fp,µ into Fp,2/p−µ−1 provided that the condition (2.11) holds. Applying

(1.2) and (1.5) we have
(

(

x

ρ

)1−ρ

D

)m

L
(ρ)
ν
{

y−ρmϕ(y)
}

(x)

=

(

(

x

ρ

)1−ρ

D

)m
∫

∞

0
λ
(ρ)
ν (xy) · y−ρmϕ(y) dy

=

∫

∞

0

(

(

x

ρ

)1−ρ

D

)m
{

λ
(ρ)
ν (xy)

}

y−ρmϕ(y) dy.

After the substitution xt = z, we obtain
(

(

x

ρ

)1−ρ

D

)m

L
(ρ)
ν
{

y−ρmϕ(y)
}

(x)

=

∫

∞

0

(

(

z

ρ

)1−ρ

D

)m
{

λ
(ρ)
ν (z)

}

ϕ(z/x)
dz

x

=

∫

∞

0
(−1)m

{

λ
(ρ)
ν−m(xy)

}

ϕ(y) dy

= (−1)mL
(ρ)
ν−m {ϕ(y)} (x)

and Proposition 2.4 is proved. �
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Proposition 2.5. Let 1 ≤ p ≤ ∞, µ, ν ∈ C, ρ > 0 and m ∈ N. For every f ∈

and F
′

p,µ we have

(2.13) x−ρmL
(ρ)
ν

(

D

(

x

ρ

)1−ρ
)m

f(x) = L
(ρ)
ν−mf(x)

provided

(2.14) Reµ < 1/p+min {0, ρRe ν} − ρm.

Proof: By the condition (2.14), [9, p. 32, Theorem 2.22] and Proposition 2.3,

the left and right hand sides of are continuous linear mapping from F
′

p,µ into

F
′

p,2/p−µ−1.

By (2.10) and [9, p. 32, Theorem 2.22] we have

〈x−ρmL
(ρ)
ν

(

D

(

x

ρ

)1−ρ
)m

f(x), ϕ(x)〉

= 〈f, (−1)m

(

(

x

ρ

)1−ρ

D

)m

L
(ρ)
ν x−ρmϕ(x)〉

(and by Proposition 2.4, (2.10) and [9, p. 32, Theorem 2.22] we get)

= 〈f,L
(ρ)
ν−mϕ(x)〉 = 〈L

(ρ)
ν−mf, ϕ(x)〉,

which concludes the proof. �
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