Previous |  Up |  Next

Article

Keywords:
invariant subspace; locally convex space; locally bounded operator; universally bounded operator; compact operator
Summary:
The invariant subspace problem for some operators and some operator algebras acting on a locally convex space is studied.
References:
[1] Brown S.: Connections between an operator and a compact operator that yields hyperinvariant subspaces. J. Oper. Theory 1 (1979), 117-121. MR 0526293
[2] Chilana A.K.: Invariant subspaces for linear operators in locally convex spaces. J. Lond. Soc. 2 (1970), 493-503. MR 0423095 | Zbl 0198.45703
[3] Edwards R.E.: Functional Analysis, Theory and Applications. Holt, Rinehart and Winston, New York, 1965. MR 0221256 | Zbl 0189.12103
[4] Floret K., Wloka J.: Einführung in die Theorie der lokalkonvexen Räume. Lectures Notes in Mathematics 56, Springer-Verlag, Berlin-Heidelberg-New York, 1968. MR 0226355 | Zbl 0155.45101
[5] Fong C.K., Nordgren E.A., Radjabalipour M., Radjavi H., Rosenthal P.: Extensions of Lomonosov's invariant subspace theorem. Acta Sci. Math. 41 (1979), 55-62. MR 0534499 | Zbl 0413.47004
[6] Joseph G.A.: Boundedness and completeness in locally convex spaces and algebras. J. Austral. Math. Soc. 24 (Series A) (1977), 50-63. MR 0512300 | Zbl 0367.46045
[7] Kalnins D.: Sous-espaces hyperinvariant d'un operateur compact. C.R. Acad. Sc. Paris, ser. A 288 (1979), 115-116. MR 0524763
[8] Kim H.W., Moore R., Pearcy C.M.: A variation of Lomonosov theorem. J. Oper. Theory 2 (1979), 131-140. MR 0553868
[9] Köthe G.: Topological vector spaces II. N. York, Heidelberg, Berlin, 1979. MR 0551623
[10] Lerer L.E.: K spektraljnoj teorii ograničenih operatorov v lokalno vipuklom prostranstve. Matem. Issled. 2 (1967), 206-214.
[11] Moore R.T.: Banach algebras of operators on locally convex spaces. Bull. Am. Math. Soc. 75 (1969), 68-73. MR 0236723 | Zbl 0189.13302
Partner of
EuDML logo