Previous |  Up |  Next

Article

Keywords:
axiom of choice; axiom of countable choice; Lindelöf space; separable space; (sequential) continuity; (Dedekind-) finiteness
Summary:
Theorem. In ZF (i.e., Zermelo-Fraenkel set theory without the axiom of choice) the following conditions are equivalent: (1) $\Bbb N$ is a Lindelöf space, (2) $\Bbb Q$ is a Lindelöf space, (3) $\Bbb R$ is a Lindelöf space, (4) every topological space with a countable base is a Lindelöf space, (5) every subspace of $\Bbb R$ is separable, (6) in $\Bbb R$, a point $x$ is in the closure of a set $A$ iff there exists a sequence in $A$ that converges to $x$, (7) a function $f:\Bbb R\rightarrow \Bbb R$ is continuous at a point $x$ iff $f$ is sequentially continuous at $x$, (8) in $\Bbb R$, every unbounded set contains a countable, unbounded set, (9) the axiom of countable choice holds for subsets of $\Bbb R$.
References:
Bentley H.L., Herrlich H.: Countable choice and pseudometric spaces. in preparation. Zbl 0922.03068
Herrlich H.: Compactness and the Axiom of Choice. Appl. Categ. Struct. 4 (1996), 1-14. MR 1393958 | Zbl 0881.54027
Herrlich H., Steprāns J.: Maximal Filters, continuity, and choice principles. to appear in Quaestiones Math. MR 1625478
Jaegermann M.: The axiom of choice and two definitions of continuity. Bulletin de l'Acad. Polonaise des Sciences, Ser. Math. 13 (1965), 699-704. MR 0195711 | Zbl 0252.02059
Jech T.: Eine Bemerkung zum Auswahlaxiom. Časopis pro pěstování matematiky 9 (1968), 30-31. MR 0233706 | Zbl 0167.27402
Sierpiński W.: Sur le rôle de l'axiome de M. Zermelo dans l'Analyse moderne. Compt. Rendus Hebdomadaires des Séances de l'Academie des Sciences, Paris 193 (1916), 688-691.
Sierpiński W.: L'axiome de M. Zermelo et son rôle dans la théorie des ensembles et l'analyse. Bulletin de l'Académie des Sciences de Cracovie, Classe des Sciences Math., Sér. A (1918), 97-152.
Partner of
EuDML logo