Article
Keywords:
axiom of choice; axiom of countable choice; Lindelöf space; separable space; (sequential) continuity; (Dedekind-) finiteness
Summary:
Theorem. In ZF (i.e., Zermelo-Fraenkel set theory without the axiom of choice) the following conditions are equivalent: (1) $\Bbb N$ is a Lindelöf space, (2) $\Bbb Q$ is a Lindelöf space, (3) $\Bbb R$ is a Lindelöf space, (4) every topological space with a countable base is a Lindelöf space, (5) every subspace of $\Bbb R$ is separable, (6) in $\Bbb R$, a point $x$ is in the closure of a set $A$ iff there exists a sequence in $A$ that converges to $x$, (7) a function $f:\Bbb R\rightarrow \Bbb R$ is continuous at a point $x$ iff $f$ is sequentially continuous at $x$, (8) in $\Bbb R$, every unbounded set contains a countable, unbounded set, (9) the axiom of countable choice holds for subsets of $\Bbb R$.
References:
Bentley H.L., Herrlich H.:
Countable choice and pseudometric spaces. in preparation.
Zbl 0922.03068
Herrlich H., Steprāns J.:
Maximal Filters, continuity, and choice principles. to appear in Quaestiones Math.
MR 1625478
Jaegermann M.:
The axiom of choice and two definitions of continuity. Bulletin de l'Acad. Polonaise des Sciences, Ser. Math. 13 (1965), 699-704.
MR 0195711 |
Zbl 0252.02059
Sierpiński W.: Sur le rôle de l'axiome de M. Zermelo dans l'Analyse moderne. Compt. Rendus Hebdomadaires des Séances de l'Academie des Sciences, Paris 193 (1916), 688-691.
Sierpiński W.: L'axiome de M. Zermelo et son rôle dans la théorie des ensembles et l'analyse. Bulletin de l'Académie des Sciences de Cracovie, Classe des Sciences Math., Sér. A (1918), 97-152.