[1] Alas O.T.:
The Axiom of choice and two particular forms of Tychonoff theorem. Portugal. Math. 28 (1968), 75-76.
MR 0281600
[2] Banaschewski B.: Compactification and the axiom of choice. unpublished manuscript, 1979.
[3] Bentley H.L., Herrlich H.:
Compactness and rings of continuous functions - without the axiom of choice. to appear.
MR 1722566 |
Zbl 0986.54029
[5] Blass A.:
A model without ultrafilters. Bull. Acad. Sci. Polon., Sér. Sci. Math. Astr. Phys. 25 (1977), 329-331.
MR 0476510 |
Zbl 0365.02054
[6] Comfort W.W.:
A theorem of Stone-Čech type, and a theorem of Tychonoff type, without the axiom of choice; and their realcompact analogues. Fund. Math. 63 (1988), 97-110.
MR 0236880
[7] Good C., Tree I.J.:
Continuing horrors of topology without choice. Topol. Appl. 63 (1995), 79-90.
MR 1328621 |
Zbl 0822.54001
[8] Goodstein R.L.:
Existence in Mathematics. in: Logic and Foundations of Mathematics (eds. D. van Dalen et al.), Wolters-Noordhoff Publ. Co., 1968, pp.70-82.
MR 0247998 |
Zbl 0162.30901
[9] Halpern J.D., Lévy A.:
The Boolean prime ideal theorem does not imply the axiom of choice. Proc. of Symposium Pure Math. of the AMS 13 (1971), Part I, 83-134.
MR 0284328
[10] Herrlich H.:
Compactness and the Axiom of Choice. Appl. Categ. Structures 4 (1996), 1-14.
MR 1393958 |
Zbl 0881.54027
[11] Herrlich H.:
An effective construction of a free ultrafilter. Papers on Gen. Topol. Appl. (eds. S. Andima et al.), Annals New York Acad Sci. 806 (1996), 201-206.
MR 1429654
[12] Herrlich H.:
The Ascoli Theorem is equivalent to the Boolean Prime Ideal Theorem. to appear.
MR 1602169 |
Zbl 0880.54005
[13] Herrlich H.: The Ascoli Theorem is equivalent to the Axiom of Choice. to appear.
[14] Herrlich H., Steprāns J.:
Maximal filters, continuity and choice principles. to appear in Quaestiones Math. 20 (1997).
MR 1625478
[15] Herrlich H., Strecker G.E.:
When in $\Bbb N$ Lindelöf?. to appear in Comment. Math. Univ. Carolinae 38 (1997).
MR 1485075
[16] Hilbert D.:
Über das Unendliche. Mathem. Annalen 95 (1926), 161-190.
MR 1512272
[17] Jaegermann M.:
The Axiom of Choice and two definitions of continuity. Bull. Acad. Polon. Sci, Sér. Sci, Math., Astr. et Phys. 13 (1965), 699-704.
MR 0195711 |
Zbl 0252.02059
[20] Jensen R.B.: Independence of the Axiom of Dependent Choices from the Countable Axiom of Choice. J. Symb. Logic 31 (1966), 294.
[21] Kelley J.L.:
The Tychonoff product theorem implies the axiom of choice. Fund. Math. 37 (1950), 75-76.
MR 0039982 |
Zbl 0039.28202
[22] Loś J., Ryll-Nardzewski C.:
Effectiveness of the representation theory for Boolean algebras. Fund. Math. 41 (1955), 49-56.
MR 0065527
[24] Moore G.H.:
Zermelo's Axiom of Choice. Its Origins, Developments and Influence. Springer, New York, 1982.
MR 0679315
[25] Mycielski J.:
Two remarks on Tychonoff's product theorem. Bull. Acad. Polon. Sci. Sér. Sci. Math., Astr. Phys. 12 (1964), 439-441.
MR 0215731 |
Zbl 0138.17703
[26] Pincus D.:
Adding Dependent Choice to the Boolean Prime Ideal Theorem. Logic Colloq. 76 (1977), 547-565.
MR 0480027
[27] Rubin H., Rubin J.E.:
Equivalents of the Axiom of Choice II. North Holland, Amsterdam, 1985.
MR 0798475
[28] Rubin H., Scott D.: Some topological theorems equivalent to the Boolean prime ideal theorem. Bull. Amer. Math. Soc. 60 (1954), 389.
[29] Sierpiñski W.: Sur le rôle de l'axiome de M. Zermelo dans l'Analyse moderne. Compt. Rendus Hebdomadaires des Sēances de l'Academie des Sciences, Paris 193 (1916), 688-691.
[30] Sierpiñski W.: L'axiome de M. Zermelo et son rôle dans la théorie des ensembles et l'analyse. Bull. Acad. Sci. Cracovie, Cl. Sci. Math., Sér. A (1918), 97-152.
[31] Douwen E.K.:
Horrors of topology without AC: a nonnormal orderable space. Proc. Amer. Math. Soc. 95 (1985), 101-105.
MR 0796455 |
Zbl 0574.03039
[32] Ward L.E.:
A weak Tychonoff theorem and the axiom of choice. Proc. Amer. Math. Soc. 13 (1962), 757-758.
MR 0186537 |
Zbl 0112.14301