Previous |  Up |  Next

Article

Keywords:
Axiom of (Countable) Choice; Boolean Prime Ideal Theorem; Theorems of Ascoli; Baire; Čech-Stone and Tychonoff; compact; Lindelöf and orderable spaces
Summary:
Many fundamental mathematical results fail in {\bf{ZF}}, i.e., in Zermelo-Fraenkel set theory without the Axiom of Choice. This article surveys results --- old and new --- that specify how much ``choice'' is needed {\it precisely} to validate each of certain basic analytical and topological results.
References:
[1] Alas O.T.: The Axiom of choice and two particular forms of Tychonoff theorem. Portugal. Math. 28 (1968), 75-76. MR 0281600
[2] Banaschewski B.: Compactification and the axiom of choice. unpublished manuscript, 1979.
[3] Bentley H.L., Herrlich H.: Compactness and rings of continuous functions - without the axiom of choice. to appear. MR 1722566 | Zbl 0986.54029
[4] Bentley H.L., Herrlich H.: Countable choice and pseudometric spaces. to appear. MR 1617460 | Zbl 0922.03068
[5] Blass A.: A model without ultrafilters. Bull. Acad. Sci. Polon., Sér. Sci. Math. Astr. Phys. 25 (1977), 329-331. MR 0476510 | Zbl 0365.02054
[6] Comfort W.W.: A theorem of Stone-Čech type, and a theorem of Tychonoff type, without the axiom of choice; and their realcompact analogues. Fund. Math. 63 (1988), 97-110. MR 0236880
[7] Good C., Tree I.J.: Continuing horrors of topology without choice. Topol. Appl. 63 (1995), 79-90. MR 1328621 | Zbl 0822.54001
[8] Goodstein R.L.: Existence in Mathematics. in: Logic and Foundations of Mathematics (eds. D. van Dalen et al.), Wolters-Noordhoff Publ. Co., 1968, pp.70-82. MR 0247998 | Zbl 0162.30901
[9] Halpern J.D., Lévy A.: The Boolean prime ideal theorem does not imply the axiom of choice. Proc. of Symposium Pure Math. of the AMS 13 (1971), Part I, 83-134. MR 0284328
[10] Herrlich H.: Compactness and the Axiom of Choice. Appl. Categ. Structures 4 (1996), 1-14. MR 1393958 | Zbl 0881.54027
[11] Herrlich H.: An effective construction of a free ultrafilter. Papers on Gen. Topol. Appl. (eds. S. Andima et al.), Annals New York Acad Sci. 806 (1996), 201-206. MR 1429654
[12] Herrlich H.: The Ascoli Theorem is equivalent to the Boolean Prime Ideal Theorem. to appear. MR 1602169 | Zbl 0880.54005
[13] Herrlich H.: The Ascoli Theorem is equivalent to the Axiom of Choice. to appear.
[14] Herrlich H., Steprāns J.: Maximal filters, continuity and choice principles. to appear in Quaestiones Math. 20 (1997). MR 1625478
[15] Herrlich H., Strecker G.E.: When in $\Bbb N$ Lindelöf?. to appear in Comment. Math. Univ. Carolinae 38 (1997). MR 1485075
[16] Hilbert D.: Über das Unendliche. Mathem. Annalen 95 (1926), 161-190. MR 1512272
[17] Jaegermann M.: The Axiom of Choice and two definitions of continuity. Bull. Acad. Polon. Sci, Sér. Sci, Math., Astr. et Phys. 13 (1965), 699-704. MR 0195711 | Zbl 0252.02059
[18] Jech T.: Eine Bemerkung zum Auswahlaxiom. Časopis Pěst. Mat. 93 (1968), 30-31. MR 0233706 | Zbl 0167.27402
[19] Jech T.J.: The Axiom of Choice. North Holland, Amsterdam, 1973. MR 0396271 | Zbl 0259.02052
[20] Jensen R.B.: Independence of the Axiom of Dependent Choices from the Countable Axiom of Choice. J. Symb. Logic 31 (1966), 294.
[21] Kelley J.L.: The Tychonoff product theorem implies the axiom of choice. Fund. Math. 37 (1950), 75-76. MR 0039982 | Zbl 0039.28202
[22] Loś J., Ryll-Nardzewski C.: Effectiveness of the representation theory for Boolean algebras. Fund. Math. 41 (1955), 49-56. MR 0065527
[23] Maddy P.: Believing the axioms I. J. Symb. Logic 53 (1988), 481-511. MR 0947855 | Zbl 0652.03033
[24] Moore G.H.: Zermelo's Axiom of Choice. Its Origins, Developments and Influence. Springer, New York, 1982. MR 0679315
[25] Mycielski J.: Two remarks on Tychonoff's product theorem. Bull. Acad. Polon. Sci. Sér. Sci. Math., Astr. Phys. 12 (1964), 439-441. MR 0215731 | Zbl 0138.17703
[26] Pincus D.: Adding Dependent Choice to the Boolean Prime Ideal Theorem. Logic Colloq. 76 (1977), 547-565. MR 0480027
[27] Rubin H., Rubin J.E.: Equivalents of the Axiom of Choice II. North Holland, Amsterdam, 1985. MR 0798475
[28] Rubin H., Scott D.: Some topological theorems equivalent to the Boolean prime ideal theorem. Bull. Amer. Math. Soc. 60 (1954), 389.
[29] Sierpiñski W.: Sur le rôle de l'axiome de M. Zermelo dans l'Analyse moderne. Compt. Rendus Hebdomadaires des Sēances de l'Academie des Sciences, Paris 193 (1916), 688-691.
[30] Sierpiñski W.: L'axiome de M. Zermelo et son rôle dans la théorie des ensembles et l'analyse. Bull. Acad. Sci. Cracovie, Cl. Sci. Math., Sér. A (1918), 97-152.
[31] Douwen E.K.: Horrors of topology without AC: a nonnormal orderable space. Proc. Amer. Math. Soc. 95 (1985), 101-105. MR 0796455 | Zbl 0574.03039
[32] Ward L.E.: A weak Tychonoff theorem and the axiom of choice. Proc. Amer. Math. Soc. 13 (1962), 757-758. MR 0186537 | Zbl 0112.14301
Partner of
EuDML logo